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Figure 1: Our Panda model runs and responds to external perturbations at interactive rates. Our Michelin model does Kung Fu moves.

Abstract
In this paper we present a physics-based framework for simulation
and control of human-like skeleton-driven soft body characters. We
couple the skeleton dynamics and the soft body dynamics to en-
able two-way interactions between the skeleton, the skin geome-
try, and the environment. We propose a novel pose-based plasticity
model that extends the corotated linear elasticity model to achieve
large skin deformation around joints. We further reconstruct con-
trols from reference trajectories captured from human subjects by
augmenting a sampling-based algorithm. We demonstrate the ef-
fectiveness of our framework by results not attainable with a simple
combination of previous methods.
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1 Introduction

Recent advances in human-like articulated rigid body character
control have demonstrated robust results for basic locomotion [Yin
et al. 2007; Coros et al. 2010] and highly dynamic motions [Liu
et al. 2012; Brown et al. 2013]. The rigidity assumption, however,
is not applicable to fat characters, such as a panda with a big belly,
whose skin and flesh deformations inevitably affect the underlying
skeleton dynamics, especially in highly dynamic tasks. Simulation
and control of human-like soft characters is extremely challenging
due to coupling between the skeleton and the soft body dynamics,
complexity of human skills, large numbers of Degrees of Freedom
(DoFs), and large ranges of motion. In the long run, biomechanical
approaches that truly model human anatomy are probably needed
to completely solve the problem [Lee et al. 2009], but their high
modeling and computational costs are prohibitive for graphics ap-
plications such as games in the foreseeable future.

We propose an affordable simulation and control framework for
human-like soft body characters. Our interactive simulation frame-
work is unique in its ability to conserve momentum, and its sim-
plicity for reimplementation. We use the rigid skeletons for mo-
tion control and the surface geometries for deformation, and couple
them properly to support two-way interactions. The rich literature
on both topics provides basic building blocks for our system. How-
ever, a simple integration of prior arts does not work directly. First,
joints of human-like characters have large ranges of motion and
can rotate more than 90 degrees for example. The flesh around
these joints thus experiences large deformations and exerts exces-
sive elastic forces onto the bones when joints bend severely. Since
the flesh and the bones are tow-way coupled, these forces will pre-
vent the bones from rotating to their target positions. This is not
an issue for simple models such as fish demonstrated in previous
work. But for human-like characters we need to properly address
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this problem. In this paper, we introduce a novel pose-based plastic-
ity model that extends the commonly used corotated linear elasticity
model to achieve large deformations around skeletal joints.

Second, even though robust motion control algorithms exist for
rigid human-like characters, their direct application for soft body
character control often either fails or is computationally implau-
sible. For example, in the sampling-based method of Liu et
al. [2010], the initial open-loop PD targets specified by captured
trajectories from human subjects are too far away from the solution
when applied on soft body characters because: (a) our soft body
characters are very different kinematically and dynamically from
the human subjects; (b) the soft body dynamics adds another layer
of complication and approximation; and (c) long airborne phases
of some of the motions, such as jump kick and Kong Fu, add an-
other dimension for failure. We present two key components, the
Inverse Dynamics (ID) and the time scaling scheme, that enable
successful control of soft body characters using the sampling-based
construction method. More specifically, the ID provides a good ini-
tial solution, and the time scaling enables referencing the motion
capture trajectories more flexibly.

2 Related Work

Control of rigid skeletons Recent years have seen significant
progress on motion control of human-like characters abstracted
as rigid skeletons, ranging from basic locomotion controllers [Yin
et al. 2007; da Silva et al. 2008; Lee et al. 2010; de Lasa et al. 2010;
Coros et al. 2010] to highly dynamic skills [Liu et al. 2010; Liu et al.
2012; Ha et al. 2012; Brown et al. 2013]. We build our motion con-
trol framework on the work of Liu and his colleagues [2010; 2012],
due to its generality for a large range of motor skills.

Soft body simulation The seminal work of [Terzopoulos et al.
1987] stimulated various physics-based methods for simulating soft
bodies. Among them we choose the corotational linear Finite Ele-
ment Method (FEM) [Müller et al. 2002; Müller and Gross 2004]
as our elasticity model because of its simplicity and rotational in-
variance. We use the mesh embedding technique of [Capell et al.
2002; Kim and Pollard 2011b] to deform a fine surface geometry
embedded in simulated tetrahedral elements.

Coupling between rigid and soft bodies Most previous work
on hybrid systems that contain soft as well as rigid parts only sup-
port one-way coupling between the two sub-systems, including
physics-based skinning[Capell et al. 2005; McAdams et al. 2011;
Hahn et al. 2012; Kavan and Sorkine 2012], and skeleton-driven
skin deformations [Capell et al. 2002]. Shinar and colleagues pro-
posed two-way coupling of rigid and deformable objects [Shinar
et al. 2008]. Most related to our work is the two-way coupling
of rigid skeletons and deformable skins for human-like charac-
ters [Kim and Pollard 2011b; Jain and Liu 2011], where the defor-
mations of the soft flesh are not treated as just secondary animations
but actually affect the underlying skeleton dynamics.

Control of soft bodies Various forms have been proposed for
soft body control, including external forces [Barbič and Popović
2008], muscle fibers [Tan et al. 2012], rest shapes [Coros et al.
2012], and skeletons [Kim and Pollard 2011b; Kim and Pollard
2011a]. However, these methods often rely on optimization in a
large parameter space with a great number of DoFs, which is com-
putationally expensive and often runs into the problem of local min-
ima. Therefore such methods are usually limited to simple charac-
ters and skills. The work of Kim and Pollard [2011b; 2011a] are
the closest in spirit to our own. They propose a fast simulation

Figure 2: Overview of our simulation and control system.

framework for skeleton-driven soft characters. However, it is not
clear in their work how to achieve more realistic large deforma-
tions around skeletal joints, or motion control for advanced motor
skills. Skeleton control and deformable skin are also considered
in [Jain and Liu 2011] and [Galoppo et al. 2007], but they handle
the soft body dynamics and skeletal dynamics in an integrated fash-
ion, while we simulate the two dynamical sub-systems separately
(but coupled through fixed nodes). Thus we can achieve at least
an order of magnitude faster simulation than the integrated dynam-
ics scheme, which makes the control construction computationally
tractable. Also only contact bodies (e.g, feet) are soft in [Jain and
Liu 2011], while our system treats the full character as soft.

3 System Overview

Figure 2 illustrates the major components of our simulation and
control system. The input to the system is a skeleton and a fine sur-
face mesh representing the soft body character. A coarse volumetric
mesh with a reference configuration X will then be constructed to
couple the skeleton and the surface geometry. More specifically, the
volumetric mesh is simulated with a soft body dynamics solver, and
its state (x, ẋ) is used to update the shape of the fine surface mesh
x̃; the skeleton is simulated with a rigid body dynamics solver, and
its state (q, q̇) is used to constrain a subset of the nodes of the coarse
mesh that are fixed to the skeleton.

4 Skeleton-driven Soft Body Dynamics

To explain the dynamics of our two-way skeleton-driven soft body
character simulation framework, we first describe the articulated
rigid body dynamics system, and then the soft boy dynamics sys-
tem. Afterwards we detail the coupling and integration of the two
dynamics sub-systems.

4.1 Skeletal Dynamics

We model a skeleton as an under-actuated articulated rigid body
system, and use PD-servos (Proportional Derivative) to actuate each
DoF:

τ = kp(q̃ − q)− kdq̇ (1)

where q and q̃ represent the joint angles and their corresponding
targets. The second term is a damping term that we will manipulate
shortly to achieve stable PD controllers.

We augment the open-source Open Dynamic Engine (ODE) v0.12
to simulate the skeletal system. Denote the linear and angular ve-
locities of the n rigid bodies of the articulated character as v. ODE



discretizes the equations of motion of the constrained multi-body
system as:

M
vt+1 − vt

h
= f + JTλ (2)

Jvt+1 = c+ Cλ (3)

where M is the inertia matrix of all bodies; J is the constraint Ja-
cobian, λ is the constraint force; and c andC are the error reduction
term and the constraint stabilization term respectively. f includes
the inertia forces, joint torques, and external forces and torques.

Usually the PD torques τ in Equation 1 is directly accumulated to
f . Inspired by [Baraff and Witkin 1998; Tan et al. 2011], how-
ever, we compute the damping torques implicitly to achieve better
stability. More specifically, we merge the first proportional term
of Equation 1 into f ; but move the derivative part to the left hand
side of Equation 2 so that the damping term is computed from the
velocity at the next time step as:

M
vt+1 − vt

h
+Dvt+1 = f + JTλ (4)

We can then solve for the velocities at the next time step as:

vt+1 = (M + hD)−1(Mvt + hf + hJTλ) (5)

Note that different from ODE’s default solver, we need to invert the
matrixM+hD here. This matrix is sparse symmetric positive def-
inite, however, so its inversion can be computed efficiently. We then
solve for λ by substituting vt+1 into Equation 3. The positions and
rotations of the rigid bodies are then integrated in a semi-implicit
fashion.

4.2 Soft Body Dynamics

The deformation of a soft object is a time dependent map from its
undeformed material coordinates X to the world coordinates x.
Following the commonly adopted Finite Element Method (FEM),
we represent a soft body as a low-resolution volumetric tetrahedral
mesh with a linear shape function. The dynamics of the soft body
is then encoded by the tetrahedral elements of the mesh:

Mẍ = fe + fd + fc + fg (6)

where M = diag{m1, ...,mn} is the mass matrix and mi is the
lumped mass of node i. fc and fg are the contact forces and the
gravity respectively. The elastic force fe and the damping force
fd are computed from the constitutive model of the material. In
this paper, we devise a pose-based constitutive model that extends
the widely adopted corotated linear model, which will be explained
in details shortly. We again use the semi-implicit Euler method,
also called symplectic Euler method, to integrate the equations of
motion for the soft body.

We use a high-resolution triangular surface mesh of the soft body
to achieve better visualization quality and better collision detec-
tion accuracy. We employ the mesh embedding technique of [Kim
and Pollard 2011b] to couple the low-res volumetric mesh and
the high-res surface mesh. More specifically, the position of a
vertex on the surface geometry is computed by interpolating the
nodal positions of the tetrahedral elements that enclose the vertex:
x̃i =

∑4
i=1 φixi, where

∑4
i=1 φi = 1 is the barycentric coordi-

nates of the vertex. We assemble all the vertices and nodes together
as x̃ = Jφx.

4.2.1 Corotated Linear Elasticity

The strain, stress and elastic force at node X in material coor-
dinates depend only on the deformation gradient F = ∂x/∂X .
Their relationships are specified by the constitutive model of the
given material. In this paper, we utilize the corotated linear elastic-
ity [Müller et al. 2002; Müller and Gross 2004; Sifakis et al. 2012]
for its simplicity and rotational invariance. It extracts the rotational
part of the deformation by polar decomposition F = RS, where
R is the rotation matrix corresponding to the rigid rotation, and
S is the symmetric matrix representing the soft stretch. Then the
strain tensor is defined as follows to eliminate rigid rotation from
the deformation:

ε = RTF − I (7)

and the first Piola-Kirchhoff stress tensor is defined as

P = R[2µε+ λ tr(ε)I]

= 2µ(F −R) + λ tr(RTF − I)R (8)

Each tetrahedral element has a constant deformation gradient that
depends only on its nodal positions:

F = BsB
−1
m (9)

The deformed shape matrixBs and the reference shape matrixBm

are calculated from the nodal positions in world space and material
space respectively:

Bs = [x1 − x0,x2 − x0,x3 − x0] (10)
Bm = [X1 −X0,X2 −X0,X3 −X0] (11)

where xi and Xi, i = 0...3, are the four nodes of a tetrahedral
element. From the deformation gradient, the total elastic force fe
for one node can then be calculated. We refer interested readers to
Section 4.2 of [Sifakis et al. 2012] for more details.

4.2.2 Pose-based Plasticity

Human-like characters can undergo large deformations near skele-
tal joints, such as shoulders and elbows, which are ineffective to
model with elasticity. Musculoskeletal models, such as the biome-
chanical models in [Lee et al. 2009], are needed to model the joint
deformations accurately. Such approaches, however, are computa-
tionally costly and hard to use for motion control. We propose a
novel pose-based plasticity model to alleviate large elastic energies
caused by joint rotations. This model is inspired by literatures that
update reference shapes when simulating plastic materials [Bargteil
et al. 2007; Wicke et al. 2010]. Different from the prior arts, how-
ever, we wish for pose-dependent plasticity rather than history de-
pendent plasticity.

Our pose-based plasticity model updates the reference nodal posi-
tion x̄i of the volumetric mesh from the undeformed material coor-
dinatesX as follows:

x̄i = Γxi(q,Xi) (12)

q represents the bone positions. We realize the plasticity model
through Linear Blend Skinning (LBS):

Γxi(q,Xi) =

n∑
j=1

wijTj(qj)Xi (13)

Tj ,j = 1, ..., n are the transformation matrices of each bone. The
skinning weights wij indicate how much the transformation of a
bone j influences the node i. We solve for wij using the bounded



biharmonic method of [Jacobson et al. 2011]. All the fixed nodes
that are rigidly attached to the skeleton are treated as control points
for the optimization algorithm. We refer interested readers to [Ja-
cobson et al. 2011] for more details.

We use additive plasticity as [O’Brien et al. 2002]:

ε = εe + εp (14)

where the total strain with respect to the original reference shape in
Equation 7 is decomposed into the elastic strain εe and the plastic
strain εp = RT

p Fp − I . Thus the elastic strain becomes:

εe = RTF −RT
p Fp (15)

The plastic deformation gradient Fp = BpB
−1
m is computed from

the pose-based shape matrix Bp = [x̄1 − x̄0, x̄2 − x̄0, x̄3 − x̄0].
Then the first Piola-Kirchhoff stress tensor of Equation 8 becomes

P = R[2µεe + λ tr(εe)I]

= 2µ(F −RRT
p Fp) + λ tr(RTF −RT

p Fp)R (16)

To conserve angular momentum, PF T needs to be symmetric,
which is equivalent to requiring RRT

p FpF
T to be symmetric. We

can then derive the solution for the rotation matrix Rp = R∗R,
whereR∗ is from the polar decomposition FpF T = R∗S∗.

4.2.3 Pose-based Damping

The damping term fd is to dissipate high-frequency vibrations in
soft bodies, and should not damp the bone motions or violate the
conservation of momentum. We connect each node xi to its corre-
sponding position in the updated reference pose x̄i with a damper:

fdi = cmi
δẋTi δxi
δxTi δxi

δxi (17)

where δxi = x̄i−xi is the position difference, and δẋi = ˙̄xi− ẋi
is the velocity difference. The damping force is projected along the
damper to eliminate undesired torques. We compute ˙̄xi by differ-
entiating Equation 12, i.e., ˙̄xi = JΓxi

q̇, where JΓxi
is the skinning

Jacobian.

Our damping method conserves momentum; does not require com-
putation of stiffness matrices and thus is efficient; and is more con-
sistent with our pose-based plasticity model. Other damping meth-
ods, such as Rayleigh damping, however, can be integrated into our
simulation framework without any problem.

4.2.4 Collisions and Contacts

We detect collisions using the fine surface mesh rather than the
coarse volumetric mesh for better accuracy. For speed and simplic-
ity, we use a point-based collision detector in this paper and ignore
self-collisions in most of our experiments. However, our frame-
work also supports self-collision if interactivity is not essential to
the application. In one of our demos in the accompanying video,
we applied the image-based collision detection method of Wang et
al. [2012] for self-collision detection, where the collision detection
becomes the bottleneck of the whole simulation pipeline.

We model collisions and contacts using penalty forces with
Coulomb friction, similar to [Kim and Pollard 2011b]. The contact
forces f̃c are then transferred onto the coarse volumetric mesh by
fc = JTφ f̃c, where Jφ is the mesh embedding Jacobian described
in Section 4.2.

4.3 Two-way Coupling

To support two-way coupling between the soft body and the rigid
skeleton, we attach the soft body to the skeleton by directly fixing
some of the coarse mesh nodes to the bones. That is, the position
and velocity of these fixed nodes are updated at the beginning of the
time step according to the dynamic states of the bones. The masses
of the fixed nodes are merged into the bones, or equivalently, the
inertia of the bones are calculated from these attached nodes. We
refer interested readers to [Kim and Pollard 2011b] for more details.

The elastic forces and contact forces on the soft body are trans-
ferred to the bones through the fixed nodes, and therefore affect the
dynamic states of the bones in the next time step. In addition, the
damping forces fdi applied on the nodes xi computed in Equa-
tion 17 should be applied to x̄i in the opposite direction. However,
x̄i is a virtual node that does not actually exist in the simulation. We
therefore apply the forces to the corresponding bones with proper
coordinate transformation. More specifically, the corresponding
forces and torques applied to the bones due to the damping forces
are computed by the skinning Jacobian as

τd = −
∑
i

JTΓxi
fdi (18)

4.4 Simulation Pipeline

Our full simulation scheme consists of three major steps:

(1) Updating kinematics: At the beginning of each time step, we
update (a) the position and velocity of the fixed nodes according to
the dynamic states of the bones; (b) the fine surface mesh according
to the mesh embedding equation; (c) the reference pose and velocity
for the pose-based plasticity and damping.

(2) Accumulating forces and torques: Then we accumulate (a) the
actuation PD torques for each joint, using the controller that will be
described in the next section; (b) the elastic forces and the damp-
ing forces from the pose-based constitutive model for the soft body
nodes; (c) the corresponding elastic forces on the fixed nodes and
damping forces on the bones.

(3) Integration: We solve and advance the skeleton dynamics sys-
tem and the soft body dynamics system using semi-implicit Euler
method as described above in Section 4.1 and Section 4.2.

Differences from Previous Approaches : Our two-way cou-
pled skeleton and soft body simulation system employs many com-
ponents from previous work. However, our framework is unique
in several ways. First, most previous work supports only one-way
coupling between the flesh and the skeleton [Capell et al. 2002; Lee
et al. 2009]. That is, the skeleton dynamics affects the soft body but
not the other way around. The work of [Kim and Pollard 2011b]
does support two-way coupling, but not demonstrated on human-
like characters. Their Fatman example is a one-way kinematically-
driven simulation. Human-like characters pose more challenges
for two-way coupling because (a) their range of motion is much
larger, and (b) their control is much more difficult. We achieve
two-way coupling using a novel pose-based plasticity model that
extends the corotated linear elasticity model. Second, our two-way
coupling method conserves momentum of the whole system. Yet
previous methods, such as [Müller and Gross 2004; Kim and Pol-
lard 2011b], can violate the conservation of momentum. Further-
more, most previous approaches for soft body character simulation,
such as [Kim and Pollard 2011b], implement their own rigid body
dynamics solver in generalized coordinates. We use a third-party
simulator Open Dynamics Engine (ODE) to simulate the skeletal



Figure 3: Variables in our inverse dynamics calculation.

system in Cartesian coordinates. We only augment it with a stable
PD controller for better simulation stability. Utilizing a third-party
simulator significantly reduces the difficulty and amount of effort
required for reimplementation.

5 Motion Control

We build control for soft body characters in two steps, following the
recent advances on rigid body character control. In the first step we
search for open-loop controls that can imitate the style of an input
reference trajectory. In the second step we learn feedback policies
so that the controls are more robust to perturbations. For this step
we directly follow [Liu et al. 2012] to build linear feedback policies
around the open-loop controls constructed in the first step.

For the first step where we search for open-loop controls, we use a
sampling-based scheme similar to [Liu et al. 2010]. Their method
was designed for rigid body characters, however, and its direct ap-
plication to soft body character control failed due to (a) the large
mismatches between the soft body characters and the motion cap-
ture subjects; (b) the add-on complexity of the soft body dynam-
ics; (c) motions with long airborne phases, such as jump kicks and
Kong Fu, were not investigated in [Liu et al. 2010] and cause the
control construction to fail. We thus augment the method with a
trajectory-based inverse dynamics procedure to compute better ini-
tial solutions for the search of open-loop controls. We also augment
the optimization with a time scaling scheme for more flexible con-
trol of timing in highly dynamic motions.

5.1 Inverse Dynamics

The method of [Liu et al. 2010] samples around the input refer-
ence trajectory and outputs perturbed target poses as the open-loop
controls. Although effective for rigid body characters, the sam-
pling procedure is not as effective and efficient for soft body char-
acters. We improve the basic scheme of using the input reference
trajectory as the initial solution for optimization with an inverse dy-
namics procedure, in order to better estimate an initial solution for
sampling. We denote the Inverse Dynamics (ID) procedure as:

τ = ID(q, q̇, q̈,fext, τext) (19)

where (q, q̇) represent the state of the skeletal system, and fext and
τext are the external forces and torques applied to the bones. The τ
on the left-hand side is the internal joint torques needed to actuate
the system to achieve the desired acceleration q̈. The inertia of the
bones for ID are computed from all the nodes of the coarse mesh
according to their skinning weights.

We estimate the kinematic quantities q, q̇, q̈ from the input refer-
ence motion. The reference trajectory comprises a series of time-

indexed poses denoted as q̃T with a time step ∆T between suc-
cessive keyframes. We estimate its velocities and accelerations by
forward finite differencing:

˙̃qT =
q̃T+1 − q̃T

∆T
(20)

¨̃qT =
˙̃qT+1 − ˙̃qT

∆T
(21)

The time step ∆T is usually much larger than the simulation time
step ∆t. To estimate q, q̇, q̈ in the resolution of ∆t, we assume
constant accelerations and a linear variation in the velocities and
positions within one time step ∆T , using a interpolation coefficient
α = (t∆t− T∆T )/∆T as follows:

q̈t = ¨̃qT (22)

q̇t = (1− α) ˙̃qT + α ˙̃qT+1 (23)

qt = (1− α)q̃T + αq̃T+1 (24)

The estimation of the external forces fext and torques τext is much
more involved. We assume the reference trajectories were captured
with no external forces other than the gravity and ground contacts.
Then the resultant ground contact force and torque with respect to
the center of mass can be computed as follows:

fc =
Pt+1 − Pt

∆t
−mg (25)

τc =
Ht+1 −Ht

∆t
(26)

where m is the total mass of the character, and P and H are the
linear and angular momentum around the center of mass respec-
tively. To estimate the contact forces and torques applied to indi-
vidual bones that are in contact with the ground, we distribute the
resultant fc and τc to contacting bones according to their relative
positions with respect to the center of mass. More specifically, de-
note the set of contacting bones as B, the contact force and torque
acting on bone i ∈ B are estimated as:

fci =
1/di∑
i∈B 1/di

fc (27)

τ ci =
1/di∑
i∈B 1/di

τc − di × fci (28)

where di is the vector from the center of mass of the character to
the center of mass of bone i (Figure 3), and di is its projected length
on the ground plane.

The above estimations can violate physical constraints because of
noise in the input trajectory and model discrepancies between the
motion capture subject and our soft body characters. We therefore
postprocess the estimated forces and torques using the following
constraints:

fy ≥ 0 (29)
||fxz|| ≤ µfy (30)
||τ || ≤ rmaxfmax (31)

The first constraint specifies that the ground reaction force can only
push but not pull the character. The second constraint bounds the
horizontal force by the normal force and the coefficient of friction
µ. The third constraint clamps the estimated ground reaction torque
with the maximal force and lever arm. rmax is the maximum dis-
tance between the center of bone i and the lowest point of its bound-
ing box (see Figure 3), and fmax =

√
1 + µ2fy is the maximal

contact force possibly applied on a single contact point.



Figure 4: Our soft body characters: Panda, Baby, and Michelin.
Light blue represents the coarse volumetric mesh. Dark blue boxes
represent the fixed nodes. Red spheres are joints.

Model
Tetrahedral Mesh Surface Mesh

#Joints
# vertices # elements # vertices # faces

Michelin 1182 4160 5263 10522 15
Panda 1220 4099 4278 8552 17
Baby 1156 3690 8194 16384 17

Table 1: Various parameters of our soft character models.

The above estimated ground contact forces and torques are accumu-
lated for each bone contacting the ground. Gravity are also added to
all the bones. Finally, we perform inverse dynamics of Equation 19
to compute the joint torques τ for each simulation time step. Be-
cause [Liu et al. 2010; Liu et al. 2012] use target poses for PD
servos as their control representation, we further transform the joint
torques to target PD angles by rearranging Equation 1 as:

q = q̃ +
1

kp
(τ + kd ˙̃q) (32)

5.2 Time Scaling

The original algorithm of [Liu et al. 2010] outputs controls that im-
itate the reference trajectory in both space and time. The reference
timing, however, should not be strictly reinforced in our scenarios.
For example, a fat character or a weak baby usually move slower
than an average adult motion capture subject. We therefore aug-
ment the sampling algorithm with an additional degree of freedom
in time. More specifically, we sample the PD target pose (in space)
and the duration to reach the target pose (in time) for every sam-
ple. This is essential to reproduce highly dynamic motions on soft
body characters, especially motions with long airborne phases, and
similar to the time scaling parameter used in [Liu et al. 2012] for
motion parameterization.

6 Results

We have tested our simulation and control framework with three
soft body characters as shown in Figure 4. The fine surface meshes
and the skeletons are given as input. We first manually generate a
low resolution surface mesh to enclose the fine surface mesh. Then
we specify fixed nodes on the bones (the blue boxes in Figure 4).
Next we generate the tetrahedral volumetric mesh from the low-res
surface mesh and the fixed nodes using the 3D Delaunay triangula-
tor TETGEN [Si 2011]. The final tetrahedral meshes have roughly
1.2K vertices and 4K tetrahedral elements as shown in Table 1.

We have implemented the simulation systems on a desktop with
8-core 2.83GHz Intel Xeon E5440. After parallelizing the com-
putation of elastic forces, the simulation speed is about four times

Figure 5: Comparison: the pose-based plasticity is turned on (left)
and off (right).

Skills Open-loop Control Feedback Policy Runtime (CPU) Runtime (GPU)
(hours) (hours) (ms/frame) (ms/frame)

Michelin run 0.5 1.0 2.1 1.2
Panda Run 0.8 3.4 2.3 1.4
Baby Roll 1.0 3.2 2.9

Table 2: Performance statistics of our parallel implementation us-
ing a simulation time step of 0.5ms.

slower than realtime as shown in Table 2, using a simulation time
step of 0.5ms. We have also implemented the pose-based constitu-
tive model on GPUs. It is slightly faster than the CPU version on
an NVIDIA Graphics card GeForce GTX 680.

We demonstrate the effectiveness of our pose-based plasticity
model in Figure 5. Without the plasticity model, the character fails
to bend its elbows sufficiently. In most of our experiments we ig-
nore self-collisions for faster performance. However, our frame-
work easily supports self-collision when a proper collision detec-
tion engine is available, such as the imaged-based method of [Wang
et al. 2012]. In the accompanying video, we show that with self-
collisions turned on, the intersections of the arms with the body are
effectively eliminated during running.

We compare our damping method with Rayleigh damping and the
method of [Kim and Pollard 2011b]. We use the Michelin model
to track multiple cycles (1.6s/cycle) of the kicking motion in a
gravity-free and contact-free environment. Since there are no exter-
nal forces and torques, the ground truth angular momentum should
remain constant. Figure 7 shows the magnitude of the angular mo-
mentum over time using different damping schemes. We can see
that the method of [Kim and Pollard 2011b] dramatically decreases
the angular momentum and fluctuates a lot. Rayleigh Damping also
results in momentum loss. In contrast, our method is stable and well
conserves the angular momentum of the system. Such feature will
be essential in integrating momentum-based motion control strate-
gies into our framework in the future [Macchietto et al. 2009].

Open-loop Control Construction We have tested our control
construction with a set of motions captured from human subjects,
including running, kicking, rolling, and Kung Fu. The control con-
struction is computationally expensive when simulating both the
rigid bodies and the soft bodies. Detailed performance statistics on
a small cluster of 40 cores can be found in Table 2. Screenshots for
Panda Run, Michelin Kung Fu, Baby Roll, and Michelin Run are
shown in Figures 1 and 6.

In the accompanying video, we show comparisons to justify the
inverse dynamics component and the time scaling scheme. With-
out the initial solution generated by ID, the construction algorithm
cannot find proper PD targets that can lift Michelin’s leg quickly
enough before it starts to fall. Time scaling is also essential for
successful control of highly dynamic motions. For example, the
character cannot perform multiple jump-kicks without proper time
scaling due to improper takeoff and landing time. Sometimes the



Figure 6: Top row: Baby roll (from right to left); Bottom row: Michelin run.

Figure 7: Comparison of damping methods.

effective time scaling can be as simple as slowing down the refer-
ence motions, for example for the Panda run and Baby roll. The
intuition is that Panda moves slower and Baby is weaker.

Closed-loop Feedback Policies We have learned feedback poli-
cies for the Michelin and Panda runs. We optimize for the feedback
policies on a cluster of 100 cores. It took about one hour to find
a robust feedback policy for Michelin to run in a stable fashion.
The feedback policy for Panda took much longer to learn due to
its large model differences from humans, such as its big belly and
short legs. The feedback policies are robust to some extent to ex-
ternal perturbations. We only optimized the feedback policies using
hard material properties, but accidentally found them robust enough
for a large range of flesh stiffness.

7 Discussion

We have presented a two-way simulation and control framework for
soft characters with inherent skeletons. Our novel pose-based plas-
ticity model supports proper deformation around joints with large
ranges of motion. In extending a sampling-based control algorithm
originally developed for rigid characters, we have devised two key
components, inverse dynamics and time scaling, to lead the search

algorithm to success, despite large model and motion discrepancies
between the soft characters and the captured subjects.

Where possible, we choose simple design options so that our sys-
tem is fast and relatively easy to reimplement. The disadvantages
of such choices include that the whole system requires tiny simu-
lation time steps, well-designed volumetric meshes, and moderate
material stiffness to remain numerically stable. We integrate the
soft body dynamics, and couple the soft body and the rigid skeleton
in an explicit fashion, because these schemes are simple and com-
putationally efficient. Replacing them with implicit integrators is a
worthy topic for future research. Additionally, our simple penalty
method for contact modeling can result in foot sliding for highly
dynamic motions such as jump kicks. In the future, we wish to
use better contact force solvers. The performance of our system is
interactive but not realtime. Better CPU and GPU implementation
and integration is needed to achieve a faster system.

Currently we manually design the low-res volumetric mesh and
place the fixed nodes. When the elements near joints are severely
deformed or even inverted, unnatural wrinkles and rips may appear
on the high-res surface mesh. A potential fix is to dynamically
remesh severely deformed areas [Wicke et al. 2010]. The skin-
ning algorithm affects the quality of the pose-based plasticity and
therefore the simulated deformations. We currently use LBS for
its simplicity. Better skinning methods, such as Dual Quaternion
Skinning [Kavan et al. 2007], elasticity-inspired methods [Kavan
and Sorkine 2012], or physically based methods [McAdams et al.
2011], may be investigated in the future. Besides skinning, the rest
shapes of the soft body can also be specified by other means, such
as interpolating example shapes [Coros et al. 2012].

The success rate of our control construction is not 100%. One fail-
ure case is that we cannot reproduce the rolling on Michelin with
soft materials. This is because the reference motion is captured
from a human athlete whose contact dynamics is significantly dif-
ferent from the soft Michelin. It would be interesting to investi-
gate how to incorporate material properties and planning into the
sampling-based control scheme.
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