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Fig. 1. Our computational framework, supporting both forward simulation and inverse design of magnetoelastic thin shell structure, can realize various
applications, ranging from forward locomotion generation, quasi-static shape design, to motion planning. From left to right, the images present: a swimming
octopus, a crawling reptile robot, a jumping starfish, a deforming Kirigami tower, and an embossed letter.

Magnetoelastic thin shells exhibit great potential in realizing versatile func-
tionalities through a broad range of combination of material stiffness, rem-
nant magnetization intensity, and external magnetic stimuli. In this paper,
we propose a novel computational method for forward simulation and in-
verse design of magnetoelastic thin shells. Our system consists of two key
components of forward simulation and backward optimization. On the simu-
lation side, we have developed a new continuum mechanics model based on
the Kirchhoff–Love thin-shell model to characterize the behaviors of a meg-
netolelastic thin shell under external magnetic stimuli. Based on this model,
we proposed an implicit numerical simulator facilitated by the magnetic
energy Hessian to treat the elastic and magnetic stresses within a unified
framework, which is versatile to incorporation with other thin shell models.
On the optimization side, we have devised a new differentiable simulation
framework equipped with an efficient adjoint formula to accommodate vari-
ous PDE-constraint, inverse design problems of magnetoelastic thin-shell
structures, in both static and dynamic settings. It also encompasses appli-
cations of magnetoelastic soft robots, functional Origami, artworks, and
meta-material designs. We demonstrate the efficacy of our framework by
designing and simulating a broad array of magnetoelastic thin-shell objects
that manifest complicated interactions between magnetic fields, materials,
and control policies.
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1 INTRODUCTION
Magnetic substance simulation has received much attention in the
computer graphics and computational physics field over the past
years. These simulations range from magnetic rigid bodies [Kim
and Han 2020; Kim et al. 2018; Thomaszewski et al. 2008], elastic
solids [Wang et al. 2020a; Yan et al. 2021; Zhao et al. 2019], ferrofluid
[Huang et al. 2019; Huang and Michels 2020; Ishikawa et al. 2013; Ni
et al. 2020], and to viscoelastic materials [Sun et al. 2021]. The most
visually appealing process underpinning thesemagnetic-related phe-
nomena rests in the complex interactions between a (time-varying)
magnetic field and non-linear solid/fluid material properties. Despite
the inspirational breakthroughs that have taken place in the field of
magnetic object simulations, the modeling of magnetic thin shells
remains as an unexplored problem due to the many difficulties that
come along with simulating the dynamic elasto-magnetic coupling
process of a thin object. In particular, there exists no effective contin-
uum mechanics model to characterize the magnetic-induced elastic
behaviors on a thin shell, not to mention a robust numerical scheme
to discretize and differentiate the mechanics model on complex thin
geometries.
Thin-shell objects, such as wrinkled cloth [Bridson et al. 2003;

Chen et al. 2021; Guo et al. 2018; Sperl et al. 2020], fractured sheets
[Busaryev et al. 2013; Manteaux et al. 2015; Pfaff et al. 2014; Zhu
et al. 2015], crumpled paper [Chen et al. 2018; Dudte et al. 2016;
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Narain et al. 2013], and human skin [Rémillard and Kry 2013; van
Rees et al. 2017], are observed in our daily life because of their visu-
ally appealing motion and geometry. These thin structures manifest
highly desirable mechanical properties: high compactness, light
weight, and extreme flexibility [Liu et al. 2021; Novelino et al. 2020;
Yang et al. 2021; Zirbel et al. 2013]. Countless scholar articles have
explored the simulation and optimization of thin-shell objects, fo-
cusing on their dynamics and control. These literature touched on
fields that include but are not limited to: computer animation, com-
putational fabrication, material science, and soft robotics (e.g., see
[Bruton et al. 2016; Chen et al. 2018; Dang et al. 2022; Guo et al.
2018; Ly et al. 2018]). Among these lines of efforts, the design and
fabrication of magnetic thin shells, which aim to deliver specific
elastic behaviors under magnetic control, have emerged as future
crucial tasks, for its wide applications in physical and engineering
sciences (e.g., actuators [Kashima et al. 2012], medical robots [Hu
et al. 2018], and drug delivery [Zhao et al. 2011]). With the help of
advanced manufacturing, engineers can now embed a customized
magnetization profile into a soft polymeric sheet and naturally con-
trol the shape morphing and body locomotion of a magnetic thin
object, using a time-varying magnetic field. However, despite its
great potential in various applications, most of the previous work on
magnetic thin-shell modeling/design (as well as magnetic soft bod-
ies) were based on engineer’s intuition and abundant trial-and-error
experiments. An efficient material simulation algorithm of these
magneto-mechanical systems, in conjunction with its differentiable
optimizer and design framework, become an emergent necessity
to automate the design and comprehension of various emerging
applications related to magnetic-shell interactions.
We identified two challenges while developing simulation and

optimization algorithms to model magnetoelastic thin shells. On
the one hand, a continuum mechanics model to characterize the
magnetic strain-stress relationship on a thin shell is needed in the
current literature. In spite of the long history of study on mechanical
thin shells and abundant models available (e.g. the Kirchhoff–Love
shell [Cirak et al. 2000], Cosserat shell [Green and Naghdi 1968],
elastica [Martin et al. 2010]), the extension of these models to ac-
commodate magnetic interaction, as well as their discretization and
numerical PDE solvers on a discretized thin-shell geometry, is not a
trivial task for numerical simulation. On the other hand, building
a fully differentiable simulation framework and the associated ad-
joint solvers and optimization frameworks for magnetoelastic thin
shells are in need to furnish supports for the various design and
optimization applications [Eshaghi et al. 2021; Kim et al. 2019; Zhao
et al. 2019]. In particular, many critical factors must be taken into
consideration for a thin-shell object design problem, such as the
inevitable multi-physics environment interaction and the numerical
instability due to nonlinear deformation.

We propose a unified computational framework to solve the simu-
lation and optimization problem for magnetic thin shells. Our model
is distinguished from others for its flexibility and versatility. It can
seamlessly integrate with any mainstream differentiable framework,
high performance elasticity solver, and numerical optimization li-
brary, which proves that we are making substantial progress toward
the goal to complete current differentiable physical ecosystem with

the ability on magnetic phenomena simulation and optimization.
We summarize our technical contributions as:
• A continuum mechanics model for magnetoelastic thin-shell
modeling that can be integrated into the existing thin-sell
simulators in a seamless fashion;
• A differentiable simulation framework enhanced to support
efficient gradient calculationswith respect tomulti-faceted de-
sign parameters, including the material properties, the resid-
ual magnetic flux density, and control policies;
• An fully automated design system to generate high-resolution
and high-performance magnetoelastic dynamic system de-
signs, exemplified by various animation, material, and robotic
designs such as crawling and jumping micro-robots, swim-
ming fish, soft-bodied hand, and mini-Kirigami graspers.

2 RELATED WORK
Thin-shell simulation. The study on continuum models for elastic

thin objects exhibiting bending resistance started from Terzopou-
los et al. [1987]. Bridson et al. [2003] derived a general discrete
thin-shell model based on a triangle mesh, whose elastic forces
are derived from an intuitive analysis. On the other hand, Grin-
spun et al. [2003] introduced an alternative energy model based on
differences of squared mean curvature. Both of them express the
interaction as the sum of membrane part and bending part. More
physically accurate analysis was introduced later by [Gingold et al.
2004], whose model of deformed shells is derived using differential
geometry under the Kirchhoff–Love assumption, with bending en-
ergy discretized in terms of dihedral angles. Bergou et al. [2006]
furthermore presented a class of isometric bending models that
accelerates time-integration of triangular-meshed cloth and shells.
Remeshing techniques were also invented under this framework in
order to enable drastic deformations [Narain et al. 2012], especially
when plasticity exists [Narain et al. 2013; Pfaff et al. 2014]. In recent
years, further augmentations on the capability of sensing intrinsic
geometry changes in response to environmental stimuli[Chen et al.
2018; van Rees et al. 2017], and describing compression/extension
and shearing normal to the mid-surface [Guo et al. 2018] broaden
the application scope of thin-shell models. At the same time, there
was a multitude of previous work in computational design that fo-
cused on the simulation and optimization for novel thin structures
and mechanics, including surface-based inflatables [Panetta et al.
2021], X-shells [Panetta et al. 2019], FlexMaps [Malomo et al. 2018],
Kirchhoff–Plateau surfaces [Pérez et al. 2017]. Some other work
focused on the fabrication feasibility such as developability, where
thin shells are 3D printed as planar and targeted at shaping curved
surfaces [Ghaffari et al. 2015; Malomo et al. 2018; Pérez et al. 2017].

Magnetic simulation. Simulation of magnetic effects based on
physical computing has been promoted by a large amount of litera-
ture in the community of computer graphics. Thomaszewski et al.
[2008] firstly shifted attention to magnetic rigid-body, and simpli-
fied the scenario to linear magnetization and ignored the reaction
of magnetized substance to the magnetic field. Kim et al. [2020;
2018] presented novel methods of dynamic magnetization simula-
tion. Through delicately designed magnet models, they managed
to apply the Landau–Lifshitz–Gilbert equation in micro-magnetism
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Fig. 2. We test (a) bending and (b) twisting behaviors of a thin plate actuated by magnetic field (red arrow). The color on the plate represents the magnitude of
local magnetic energy, which increases from blue to red.

intomacro-scale simulation, which is also stable due to the nonlinear
magnetization, and facilitates mutual induction and remanence as
well. Other work concentrates on magnetic simulation of non-rigid
bodies, including ferrofluids [Huang et al. 2019; Huang and Michels
2020; Ishikawa et al. 2013; Ni et al. 2020] and viscoelastic bodies [Sun
et al. 2021]. As far as we know, simulation of magnetic deformable
solids has not been specifically studied yet. In the engineering com-
munity, the model of isotropic magneto-sensitive Cauchy-elastic
solids was developed by Dorfmann and Ogden [2003]. Based on this
model, Zhao et al. [2019] presented the first continuum-level hard
magnetoelastic material model, where the Helmholtz free energy
density function comprises elastic (neo-Hookean) and magnetoe-
lastic parts. Subsequently, a simulation framework using the finite
element method, developed by the same authors, was shown to be in
quantitative agreement with their experimental results. This formu-
lation has inspired many other works on hard-magnetic beams and
elastica [Wang et al. 2020a; Yan et al. 2021] modelling and simulation,
or incorporating other effects such as viscosity [Garcia-Gonzalez
2019]. In concurrent work, Pezzulla et al. [2021] derive the same
reduced model as proposed here, differing only by augmenting the
model by also accounting for variations along thickness. They also
validate the reduced model against with the 3D finite element im-
plementation based on the full energy model proposed by Zhao
et al. [2019]. However, differentiable simulation and optimization
frameworks remain unexplored in Pezzulla et al. [2021].

Computational design and trajectory optimization. In computer
animation and physics-based simulation, it is a common challenge
to design the precise material layouts, topological structures, and
external stimuli, to yield desired dynamic or quasi-static behaviors.
The space-time optimization methods, being firstly introduced into
graphic community by Witkin and Kass [1988], have been utilized
extensively to support the design of animations [Barbič et al. 2012; Li
et al. 2014; McNamara et al. 2004; Schulz et al. 2014], materials [Hahn
et al. 2019; Wang et al. 2015] and structures [Wang et al. 2020b; Zhu
et al. 2017]. The objective function for a typical space-time optimiza-
tion problem measures a temporally-accumulated distance between
the desired and the predicted motion sequence and the amount of
external force required to generate the motion. In our paper, with
the help of magnetic force, we can optimize trajectories without

any artificial external force. Although the objective function is usu-
ally quadratic and hence straightforward to solve, the constraint
function(s) can be nonlinear, which pose additional challenges to
the numerical optimizer. One common approach for solving this
problem is sensitivity analysis [Christopher Frey and Patil 2002],
which can effectively find a feasible descent direction of the ma-
terial parameters with respect to minimizing the objective while
satisfying the PDE constraints. It is often combined with the adjoint
method [McNamara et al. 2004] to efficiently evaluate the descent
direction. This is especially important for a long temporal sequence.
To efficiently calculate derivatives of various physical systems, dif-
ferentiable physics simulations have emerged as active research
direction crossing graphics and machine learning communities over
past years. A broad array of differentiable simulators have been pro-
posed, including rigid-body dynamics [Freeman et al. 2021; Werling
et al. 2021], soft-body dynamics [Du et al. 2021; Geilinger et al. 2020;
Hu et al. 2019], cloth [Liang et al. 2019; Qiao et al. 2020] , and fluid
dynamics [Du et al. 2020; Holl et al. 2020; Ma et al. 2021; Schenck
and Fox 2018]. Our differentiable thin-shell simulator falls into this
category by extending the physical model from the volumetric to
thin-shell representation.

3 PHYSICAL MODELS
A fully magnetized hard-magnetic thin shell [Kim et al. 2019; Zhao
et al. 2019] can generate magnetic Cauchy stress through the ap-
plication of an actuating magnetic field to the intrinsic remnant
magnetization in the material. The magnetic Cauchy stress further
drives the deformation of the shell, which leads to the elastic Cauchy
stress. The areal potential energy density can be calculated as the
sum of the elastic part and the magnetic part:

𝐸 = 𝐸elasticity + 𝐸magnetism. (1)

We will explain the calculation of the elastic term in Section 3.1 and
the magnetic term in Section 3.2 respectively.

In the rest of this article, we symbolize vectors and second-order
tensors (matrices) using bold letters (such as 𝑯 and 𝑭 ), and scalars
using italic letters (such as𝐻 and 𝜇0). We consider quantities in both
the material (i.e., undeformed) space and the world (i.e., deformed)
space, using the convention that symbols accented with tildes (e.g.,
𝒙̃ vs. 𝒙) refer to the former.
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Fig. 3. Magnetic remanence distribution of some of our examples: (a) the bar for track-fitting, (b) the hexagram, (c) the reptile robot, (d) the octopus, (e) the
kirigami, and (f) the starfish.

(a) (b) (c) (d)

Fig. 4. A deforming hexagram. From left to right: (a) starting from the relaxation position, the magnetized thin-shell hexagram deforms in given magnetic field,
producing motions of contraction (b) curling down and (c) curling up and (d) arm-shaking. The magnetization profile is optimized using our quasi-static solver.

3.1 Elasticity of Thin Shells
We build our elastic thin-shell model under the Kirchhoff–Love
assumption, which characterizes a thin shell as a codimension-one
surface and a uniform thinkness ℎ that is much smaller than its
minimal radius of curvature.

We define the deformation of the thin shell as a mapping from its
material space to the world space: 𝝋 (·, 𝑡) : Ω0 → Ω𝑡 for Ω0,Ω𝑡 ⊂
R3, where 𝒙̃ ∈ Ω0 refers to material points and 𝒙 ∈ Ω𝑡 represents
the point at time 𝑡 in the world space. The second-order tensor
𝑭 = 𝜕𝒙/𝜕𝒙̃ , named deformation gradient, is used to analyse defor-
mation, whose determinant is denoted by 𝐽 , which characterizes
infinitesimal volume change. The deformation gradient determi-
nant is further used to calculate the mass density 𝜌 and the energy
density𝑊 in the world space:{

𝜌 = 𝐽−1𝜌 , (2)
𝑊 = 𝐽−1𝑊̃ . (3)

To quantitatively analyse strains, the Green strain tensor 𝑮 is
defined as 𝑮 = (𝑭T𝑭 − 𝑰 )/2, in which 𝑰 is the second-order unit
tensor. For thin shells, this tensor is further decomposed as

𝑮 (𝑤) = 𝑮membrane +𝑤𝑮curvature, 𝑤 ∈ [−ℎ/2, +ℎ/2] , (4)

with the membrane and curvature strains calculated only on the
middle surface. Specifically, 𝑮membrane equals to (𝑺T𝑺 − 𝑰 )/2 with
𝑺 as the two-dimensional in-plane deformation gradient, while the
curvature part takes the shape operator into account [Gingold et al.
2004].
Based on the two stains, we take the St. Venant–Kirchhoff model

of nonlinear materials to calculate the bulk energy density as

𝑊̃elasticity =
𝑌

2(1 − 𝜈2)

(
(1 − 𝜈) Tr𝑮2 + 𝜈 Tr2 𝑮

)
, (5)

where the coefficients𝑌 and 𝜈 are the Young modulus and the Poisson
ratio of the material. By taking some approximations and integrating

𝑊̃elasticity from −ℎ/2 to +ℎ/2, we obtain the areal elastic energy
density 𝐸elasticity as follows:

𝐸elasticity = 𝐸membrane + 𝐸bending, (6)

𝐸membrane =
𝑌ℎ

2(1 − 𝜈2)

(
(1 − 𝜈) Tr𝑮2

mem + 𝜈 Tr2 𝑮mem
)
, (7)

𝐸bending =
𝑌ℎ3

24(1 − 𝜈2)

(
(1 − 𝜈) Tr𝑮2

cur + 𝜈 Tr2 𝑮cur
)
, (8)

in which the subscripts ‘mem’ and ‘cur’ are abbreviations of ‘mem-
brane’ and ‘curvature’ respectively.

3.2 Magnetism of Thin Shells
We derive the formula of magnetic thin-shell energy from the gen-
eral model of volumetric magnetoelastic bodies.

The magnetic theory in matter studies interactions between two
fields: the magnetic flux intensity 𝑩 and the magnetic field intensity
𝑯 . In the absence of any free current or displacement current, the
evolution of the magnetic field is governed by quasi-static Maxwell’s
equations: { ∇ · 𝑩 = 0, (9)

∇ × 𝑯 = 0. (10)

Meanwhile, we define 𝑩̃ and 𝑯̃ in Maxwell’s equations in the mate-
rial space as {

𝑩̃ = 𝐽 𝑭−1𝑩, (11)
𝑯̃ = 𝑭T𝑯 . (12)

We provide the mathematical derivation in Appendix A.1. We also
refer the readers to Dorfmann and Ogden [2014] for a detailed
discussion.

The magnetization of ferromagnetic substance can be depicted by
the hysteresis loop, as shown in Figure 6. Once the material is fully
magnetized, there exists a characteristic remanence magnetization
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Fig. 5. A crawling reptile thin-shell robot. The magnetized thin-shell structure climbs up a bump (the top row) and over a slope (the bottom row), under a pure
rotating magnetic field.

Hc

Br

�����������������
�

B

H

��	��
�
�����
�����
�
�����

Fig. 6. Magnetic hysteresis loops and 𝐵-𝐻 curves of soft-magnetic and hard-
magnetic materials, with 𝐵r = 𝜇0𝑀r as the residual magnetic flux intensity
and 𝐻c as the coercive magnetic field intensity.

𝑩r when the external magnetic field is removed. Demagnetization
happens when a reversed external magnetic field with a magnitude
greater than the coercive magnetic field intensity 𝑯c is applied. Ac-
cording to the magnitude of 𝑯c, ferromagnetic substances can be
further divided into two categories — soft magnetic material and
hard magnetic material. Hard-magnetic materials maintain a stable
residual magnetic flux density covering a wider range of actuation
magnetic intensity. And the hysteresis loop can be further simpli-
fied with a linear relation, which leads to the ideal hard-magnetic
assumption.

Our magnetic model is motivated by Zhao et al. [2019] in whose
work the ideal hard-magnetic model was used to depict magneti-
zation when the field strength is far below the coercivity of the
immersed hard-magnetic material. As shown in Figure 6, the in-
crease of 𝑩 is proportional to the increase of 𝑯 within the actuation

field range, which can be formulated by

𝑩 = 𝜇0 (𝑯 +𝑴r), (13)

with 𝜇0 as the constant vacuum permeability. Here, the remanent
magnetization intensity 𝑴r is assumed to be independent of 𝑯 ,
behaving as an intrinsic, embedded quantity of hard-magnetic ma-
terials, which means 𝑴̃r, defined as

𝑴̃r = 𝐽 𝑭−1𝑴r, (14)

remains constant (Appendix A.1).
Considering the work required to realign𝑴r along 𝑩 in the world

space, we acquire the magnetic energy density of the immersed hard-
magnetic material as follows:

𝑊magnetism = −𝑴𝑟 · 𝑩 = −𝐽−1𝑭 𝑴̃𝑟 · 𝑩, (15)

which can be pulled back into the material space as

𝑊̃magnetism = 𝐽𝑊magnetism = −𝑭 𝑴̃𝑟 · 𝑩. (16)

The previous two equations indicate that selecting proper external
magnetic filed is able to trigger potential energy transition between
elasticity and magnetism. Similar ideas have been applied to support
volumetric elasticity-magnetism energy transition in Zhao et al.
[2019] through its Equations (3.7) and (3.8).
In practice, the magnetic flux intensity is often divided into two

components as𝑩 = 𝑩applied+𝑩induced, where𝑩applied is the external
field applied and 𝑩induced is the internal field induced by concerned
magnetic materials. We assume that the latter is far smaller than
the former, so 𝑩 in Equations (15) and (16) can be approximately
replaced by 𝑩applied.

Taking the thin-shell model, we further assume that 𝑴r does not
vary along the normal direction to the middle surface, which makes
it possible to flatten the magnetic energy density as

𝐸magnetism =

∫ +ℎ2

−ℎ
2

𝑊̃magnetism d𝑧

= −
(∫ +ℎ2

−ℎ
2

𝑭 (𝑧) d𝑧
)
𝑴̃r · 𝑩applied

≈ −ℎ𝑭 |𝑧=0 𝑴̃𝑟 · 𝑩applied. (17)
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The applied magnetic field is chosen to be continuous within the
concerned domain, in order that 𝑩applied can be regarded as an
invariant along the normal direction to the middle surface in the
thin shell.

4 FORWARD SIMULATION

4.1 Discretization
Our discretization of elasticity follows [Gingold et al. 2004]. Their
discretized deformation gradient is further utilized here for the
discretization of magnetism. We discretize the thin shell using a tri-
angle mesh, assuming constant 𝑮mem, 𝑮cur, and 𝑴̃r for each triangle.
The number of vertices, faces, and edges of the discretized thin shell
object are denoted by 𝑛v, 𝑛f and 𝑛e respectively for conveniency.

෥𝒂1

෥𝒂2

෥𝒂3
෤𝒕1

෤𝒕2

෤𝒕3

෥𝒏

෥𝒏 =
෥𝒂1 × ෥𝒂2
෥𝒂1 × ෥𝒂2

෤𝒕𝑖 = ෥𝒂𝑖 × ෥𝒏

As shown in the inset fig-
ure, we use 𝒂̃𝑖 with 𝑖 = 1, 2, 3
to denote the three edge vec-
tors of a triangle in the mate-
rial space. We use 𝒂̃𝑖 to denote
the same edge vectors in the
world space. We define vector
𝒕𝑖 as 90 degree clockwise ro-
tated 𝒂̃𝑖 . The membrane strain
of the face can be calculated as

𝑮mem =
1

16𝐴̃2

∑
𝑖, 𝑗,𝑘

(
𝒂̃2𝑖 − 𝒂

2
𝑖

) (
𝒕 𝑗 ⊗ 𝒕𝑘 + 𝒕𝑘 ⊗ 𝒕 𝑗

)
, (18)

where (𝑖, 𝑗, 𝑘) is a circular permutation of (1, 2, 3), and 𝐴̃ stands for
the area of the undeformed triangle. Similarly, by averaging the
shape operator onto faces, we acquire the curvature strain of the
face as

𝑮cur =
1
2𝐴̃

3∑
𝑖=1

1
|𝒂̃𝑖 |

(
𝜅 (𝜃𝑖 ) − 𝜅 (𝜃𝑖 )

) (
𝒕𝑖 ⊗ 𝒕𝑖

)
, (19)

with 𝜅 (𝜃 ) = 𝜃 in our model. Besides, given that 𝒏̃ = 𝒂̃1× 𝒂̃2/|𝒂̃1× 𝒂̃2 |
and 𝒏 = 𝒂1 × 𝒂2/|𝒂1 × 𝒂2 |, we obtain the deformation gradient at
𝑧 = 0 as

𝑭0 = 𝑭 |𝑧=0 =
(
𝒂1 𝒂2 𝒏

) (
𝒂̃1 𝒂̃2 𝒏̃

)−1 . (20)

Explanations of these formulae can be found in the work of Gingold
et al. [2004].
Substituting Equations (18), (19), and (20) into Equations (7), (8)

and (17) respectively and conducting integration, we obtain each
face’s potential energy 𝜀 as

𝜀 = 𝜀membrane + 𝜀bending + 𝜀magnetism + 𝜀gravity, (21)

𝜀membrane =
𝑌𝐴̃ℎ

2(1 − 𝜈2)

(
(1 − 𝜈) Tr𝑮2

mem + 𝜈 Tr2 𝑮mem
)
, (22)

𝜀bending =
𝑌𝐴̃ℎ3

24(1 − 𝜈2)

(
(1 − 𝜈) Tr𝑮2

cur + 𝜈 Tr2 𝑮cur
)
, (23)

𝜀magnetism ≈ −𝐴̃ℎ𝑭0𝑴̃r · 𝑩applied, (24)

𝜀gravity = 𝜌𝐴̃ℎ, (25)

where the height ℎ is measured at the barycenter of the triangle,
and the quantity of 𝑩applied is also sampled there.

4.2 Time Integration
We adopt the implicit Euler method to discretize forward simulation
in time, which requires converting numerical integral equations
into a minimization problem of 𝒙 and an update step of 𝒗:

𝒙𝑛+1 = argmin
𝒙

𝐸 ′(𝒙), (26)

𝒗𝑛+1 =
1
Δ𝑡

(
𝒙𝑛+1 − 𝒙𝑛

)
, (27)

in which the vertex positions 𝒙𝑖 and velocities 𝒗𝑖 are packed into
vectors 𝒙 = (𝒙1, 𝒙2, . . . , 𝒙𝑛v ) and 𝒗 = (𝒗1, 𝒗2, . . . , 𝒗𝑛v ). A typical
representation of 𝐸 ′ for dynamic simulation looks like:

𝐸 ′ =
1

2Δ𝑡2

𝑛v∑
𝑖=1

𝑚𝑖

��𝒙𝑖 − 𝒙𝑛𝑖 − Δ𝑡 𝒗𝑛𝑖 ��2 + 𝑛f∑
𝑗=1

𝜀 𝑗 (𝒙), (28)

where 𝑖 iterates over vertex indices; 𝑗 iterates over face indices.
The nodal mass 𝑚𝑖 is calculated by the weighted average of its
neighboring faces. For quasi-static simulation, only the second term
is left.
A Newton-like method with diagonal correction is adopted to

solve the above equations iteratively, which is shown in Algorithm 1.
We refer readers to Appendix A.2 for details of Jacobian and Hessian
terms needed in the implicit scheme.

ALGORITHM 1: Implicit-Euler Time Integration
Input: the packed vectors 𝒙𝑛 and 𝒗𝑛 at the current time, the energy

function 𝐸 (𝒙) and the time step Δ𝑡 .
Output: the packed vectors 𝒙𝑛+1 and 𝒗𝑛+1, after the time step.
𝒙 ← 𝒙𝑛 + Δ𝑡 𝒗𝑛 ; // initial guess

for 𝑖 ← 1 to the maximal number of iterations do
𝑱 ← 𝜕𝐸/𝜕𝒙 , 𝑯 ← 𝜕2𝐸/𝜕𝒙2;
𝜆 ← 10−6;
while True do

𝑯 ← 𝑯 + 𝜆𝑰 ; // add regularizer to the Hessian

Solve 𝑯𝒑 = 𝑱 with some preconditioner;
if success then Break;
𝜆 ← 2𝜆;

end
𝒙 ← line search 𝒙 to minimize 𝐸′ in the direction of 𝒑;
if 𝑱 · 𝒑 < 𝜂 then Break; // 𝜂 = 10−12

end
𝒗𝑛+1 = (𝒙𝑛+1 − 𝒙𝑛)/Δ𝑡 ;

5 OPTIMIZATION
We define our optimization problem in a saturated-magnetized hard-
magnetic thin shell structure immersed in external magnetic field.
The optimization parameters include magnetic field configuration
𝑩applied, elastic stiffness 𝑌 , and remanent magnetization intensity
𝑴r.

We formulate two categories of optimization problems: (1) Given
𝑩applied, we want to design 𝑴r or the combination of 𝑴r and 𝑌

to transform the reference shape of the thin shell structure to a
specified target shape. (2) Given 𝑴r and 𝑌 in the domain, we want
to design 𝑩applied to enable the thin shell to deliver the desired
dynamic motion or achieve designated positions.
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Fig. 7. Track fitting. The bar with one end fixed and the other end moves, driven by the magnetic field, precisely tracks the reference trajectory. As shown in
(a), the red line shows the reference trajectory while the blue line shows the trajectory of the moving end, with dots indicating positions in progressive frames.
The blue points are initially away from the red curve as it takes time for them to move to the starting point; these frames are outside the consideration of the
objective function, hence will not affect the final result. (b) shows the convergence curve of the objective function. (c) shows the frame in which the bar arrives
at the starting point of the reference track.

5.1 Quasi-Static Optimization
Parameters. The target shape is expressed in a 3𝑛v-dimensional

stacked vector of vertex positions, denoted 𝒙∗, and the parameters
to optimize are stacked into a vector 𝒌 . Since we aim to design the
remanent magnetization distribution of a thin-shell object, we stack
the three-dimensional magnetization vector 𝑴̃r on each face of the
thin shell in the material space to form a long vector 𝒌mag ∈ R3𝑛f . In
order to get a better folding effect, we also optimize the membrane
coefficients 𝒌mem ∈ R3𝑛f and the curvature coefficients 𝒌cur ∈ R3𝑛𝑒
at the same time. The former is actually the Young modulus of
each face, and the latter is used to scale the dihedral angle 𝜃 into the
curvature for each edge. In a word, 𝒌 is constructed by concatenating
𝒌mag, 𝒌mem and 𝒌cur.

Formulations. To configure the target shape, an optimization prob-
lem is formulated as follows:

argmin
𝒌

𝐹 (𝒙 (𝒌)) =
��𝒙 (𝒌) − 𝒙∗��2, (29)

subject to 𝒈(𝒙, 𝒌) = 0, (30)

with the objective function 𝐹 (𝒙) as the sum of square distances, and
the constraints

𝒈 =
𝜕
∑𝑛f

𝑗=1 𝜀 𝑗 (𝒌)
𝜕𝒙

= 0 (31)

indicating the force balance principle, derived from Equation (28).
It is noted that 𝒙 is determined by 𝒌 implicitly.

Gradients. The derivative of the objective function 𝐹 with respect
to 𝒌 is calculated by the method of Lagrange multipliers:

𝐿 = 𝐹 (𝒙) + 𝝀T𝒈, (32)

where 𝝀 is a 3𝑛v-dimensional multiplier vector. If we set 𝝀 so that
the equation

𝜕𝐹

𝜕𝒙
+ 𝝀T 𝜕𝒈

𝜕𝒙
= 0, (33)

holds, then the gradient of 𝐹 is obtained by

d𝐹
d𝒌

=
d𝐿
d𝒌

= 𝝀T
𝜕𝒈

𝜕𝒌
= − 𝜕𝐹

𝜕𝒙

(
𝜕𝒈

𝜕𝒙

)−1
𝜕𝒈

𝜕𝒌
.

Optimization. Weutilize themethod ofmoving asymptotes (MMA)
[Svanberg 2002] to solve the optimization problem in this section.
The steps to optimize the parameter vector are summarized in Al-
gorithm 2.

5.2 Trajectory Optimization
Parameters. Without loss of generality, we assume that there are

𝑠 + 1 frames in total, uniformly sampled from 𝑡0 = 0 to 𝑡𝑠 = 𝑇 , with
Δ𝑡 = 𝑇 /𝑠 as the time step. Any quantity taking 𝑡 as an argument is
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Fig. 8. SIGGRAPH banner. The eight letters are individually optimized as in the right of Figure 9b, and then their optimized material properties are assembled
to form the banner.

(a) (b)

Fig. 9. Optimizing remanence alone vs. jointly with Young’s modulus. (a) shows the remanence optimization results of letter A (the top) and S (the bottom).
The arrows in the left column represent the magnetic remanence of the faces, while the colors in the right column represent the magnitude of Young’s modulus
of the faces; the value increases from purple to yellow. (b) From left to right, each column shows the optimization results with 𝑴𝑟 , (𝑴𝑟 , 𝒌mem) and (𝑴𝑟 ,
𝒌mem,𝒌cur) as optimization variables respectively. As can be seen clearly, co-designing of elastic and magnetic materials can yield much better results with
clear edges and sharp folds.

then rewritten with a superscript 𝑛 that denotes the time 𝑡𝑛 = 𝑛Δ𝑡 .
Parameters 𝒌 that need optimizing determine 𝑩applied within the
time interval. For example, we use 𝒌 ∈ R3𝑠 to stack a uniform
external field that can change the strength and direction at each
frame. In addition, there are some key frames to control the thin-
shell robot, whose indices form a set 𝑈 . The initial states, 𝒙0 and
𝒗0, are given ahead.

Formulations. To design the applied magnetic field, a trajectory
optimization problem is formulated as follows:

argmin
𝒌

𝐹 ({𝒙𝑛}, 𝒌) =
∑
𝑛∈𝑈

��𝒙𝑛 − 𝒙𝑛∗��2 + 𝐹p (𝒌), (34)

subject to 𝒈𝑛 (𝒗𝑛, 𝒗𝑛−1, 𝒙𝑛, 𝒌) = 0, (35)

and 𝒉𝑛 (𝒙𝑛, 𝒙𝑛−1, 𝒗𝑛) = 0, (36)
𝑛 = 1, 2, . . . , 𝑠 ,

where the constraints

𝒈𝑛 = M

(
𝒗𝑛 − 𝒗𝑛−1

)
+ Δ𝑡

𝜕
∑𝑛f

𝑗=1 𝜀 𝑗 (𝒙
𝑛)

𝜕𝒙𝑛
= 0, (37)

ALGORITHM 2: Quasi-Static Optimization
Input: the objective function 𝐹 (𝒙) and the constraints 𝑔 (𝒙,𝒌) = 0.
Output: optimized 𝒌 .
for 𝑖 ← 1 to the maximal number of iterations do

Solve the quasi-static equation for 𝒙 by Algorithm 1;
𝝀T ← −(𝜕𝒈/𝜕𝒙)−1 (𝜕𝐹/𝜕𝒙) ;
d𝐹/d𝒌 ← 𝝀T (𝜕𝒈/𝜕𝒌) ;
Pass d𝐹/d𝒌 to the optimizer to calculate the descent direction;
Use the line-search method to determine the descending step
size;

Update 𝒌;
if |Δ𝒌 | < 𝜂 then Break; // 𝜂 = 10−5

end

with M as a 3𝑛vth-order diagonal matrix consisting of nodal mass
𝑚𝑖 , and

𝒉𝑛 =

(
𝒙𝑛 − 𝒙𝑛−1

)
− Δ𝑡 𝒗𝑛 = 0 (38)

are derived from the implicit Euler time-integration scheme (Equa-
tions (27) and (28)), The objective function 𝐹 ({𝒙𝑛}, 𝒌) consists of
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Fig. 10. Swimming octopuses. Octopuses made of thin shells swim through pipes. (a)–(g) and (h)–(n) illustrate the two typical patterns of the magnetically
actuated swimming strategy that allow the octopus to go through different pipe landscapes. As shown in (a)–(g), the octopus has to adopt certain strategy to
squeeze through the narrow space, while in (h)–(n), the octopus has plenty of room to stretch the tentacles, which would benefit the hydrodynamic force to
create a faster swim.

two terms, in which the first term is the sum of squared distances be-
tween vertex positions and the desired ones at every key frame, and
the second term, denoted 𝐹p (𝒌), is included to penalize excessive
or discontinuous field strength if necessary.

Gradients. We utilize the adjoint method [McNamara et al. 2004]
to compute the derivative of the objective function 𝐹 with respect to
𝒌 , in which two sequences of Lagrange multipliers {𝝀𝑛𝑣 } and {𝝀𝑛𝑥 }
are introduced:

𝐿 = 𝐹 ({𝒙𝑛}, 𝒌) +
𝑠∑

𝑛=1

(
𝝀𝑛𝑣

T𝒈n + 𝝀𝑛𝑥T𝒉n
)
, (39)

where each 𝝀𝑛𝑣 or 𝝀𝑛𝑥 is a 3𝑛v-dimensional multiplier vector. If we
set 𝝀𝑣 and 𝝀𝑥 so that the equations

𝝀𝑛𝑣 = 𝝀𝑛+1𝑣 + Δ𝑡M−1𝝀𝑛𝑥 , (40a)

𝝀𝑛𝑥 = 𝝀𝑛+1𝑥 − Δ𝑡
𝜕2

∑𝑛f
𝑗=1 𝜀 𝑗 (𝒙

𝑛)

(𝜕𝒙𝑛)2
𝝀𝑛𝑣 −

𝜕𝐹

𝜕𝒙𝑛
, (40b)

𝝀𝑠+1𝑥 = 𝝀𝑠+1𝑣 = 0. (40c)

hold, then the gradient of 𝐹 is obtained by

d𝐹
d𝒌

=
d𝐿
d𝒌

=
𝜕𝐹p

𝜕𝒌
+

𝑠∑
𝑛=1
(𝝀𝑛𝑣 )T

𝜕𝒈𝑛

𝜕𝒌
. (41)

Optimization. TheMMA is used to solve the optimization problem
here as well. The processes to solve the time-dependent optimiza-
tion problem are summarized in Algorithm 3. Although the Hessian
matrix in Equation (40) is time-dependent, we do not need to store
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Table 1. We list parameters used in our simulation and optimization examples: the number of faces 𝑛f (for a volumetric object, 𝑛f denotes the number of faces
on its surface mesh), the number of elements (for volumetric objects) 𝑛e, the number of vertices 𝑛v, Young’s modulus 𝑌 , the Poisson ratio 𝜈 , the damping
coefficient 𝛾 , the time step size Δ𝑡 , the number of degrees of freedom𝑚 (i.e., the dimension of 𝒌), the residual objective function value 𝑟 , the runtime for the
entire optimization 𝑡opt, and the number of optimization iterations iteropt. For all the optimization examples, we set the ranges of 𝑘mem (𝑘cur = 𝑘memℎ

2/12)
and the external magnetic field are [104, 108 ] (PA) and [−0.05, 0.05] (T), respectively, and no bounds for the magnetic remanence.

Figure Example† 𝑛f 𝑛e 𝑛v 𝑌 [Pa] 𝜈 𝛾 [N · s/m] Δ𝑡 [s] 𝑚 𝑟 𝑡opt [s] iteropt
2 Bending and twisting 2048 – 1097 1 × 105 0.5 1 × 10−4 1 × 10−2 – – – –
5 Reptile 496 – 326 1 × 105 0.5 1 × 10−2 1 × 10−4 – – – –
4 Hexagram 2048 – 1097 1 × 105 0.5 5 × 10−3 1 × 10−2 6 k 6.7 × 10−2 1.6 × 104 50
7 Track fitting (L) 768 – 417 1 × 105 0.5 1 × 10−4 1 × 10−3 0.5 k 3.8 × 10−5 4.4 × 104 463
7 Track fitting (C) 768 – 417 1 × 105 0.5 1 × 10−4 1 × 10−3 0.3 k 2.3 × 10−5 1.6 × 104 241
8 Letters 8192 – 4225 1 × 105‡ 0.5 4 1 × 10−4 9.0 k 2.5 × 100 3.0 × 104 90

10a–g Octopus (pipe I) 492 – 313 1 × 104 0.5 0 1 × 10−3 9.0 k 9.8 × 10−4 3.6 × 104 72
10h–n Octopus (pipe II) 492 – 313 1 × 104 0.5 0 1 × 10−3 9.0 k 3.9 × 10−3 2.2 × 104 41
11 Octopus (tunnel) 492 – 313 1 × 104 0.5 0 1 × 10−3 9.0 k 8.8 × 10−3 4.4 × 104 49
13 Kirigami∗ 244 – 205 1 × 105 0.5 1 × 10−3 1 × 10−2 0.7 k −2.8 × 100 3.9 × 102 95

2.1 k 4.9 × 10−4 4.1 × 104 486
14 Hand (top) 3320 4975 1662 1 × 106 0.45 1 1 × 10−4 1.0 k 4.1 × 10−5 1.2 × 102 16
14 Hand (middle) 3320 4975 1662 1 × 106 0.45 1 1 × 10−4 1.0 k 1.8 × 10−5 1.3 × 103 30
14 Hand (bottom) 3320 4975 1662 1 × 106 0.45 1 1 × 10−4 1.0 k 2.6 × 10−5 5.9 × 103 45
16 Heart (top) 1326 1963 665 1 × 105 0.45 0.2 1 × 10−4 1.4 k 3.0 × 10−3 5.6 × 102 72
16 Heart (bottom) 1326 1963 665 1 × 105 0.45 0.2 1 × 10−4 0.5 k 5.8 × 10−3 9.2 × 102 42
15 Starfish (top) 1400 1870 702 1 × 106 0.45 0 5 × 10−4 1.2 k 8.7 × 10−4 2.5 × 104 42
15 Starfish (middle) 1400 1870 702 1 × 106 0.45 0 5 × 10−4 1.2 k 2.0 × 10−4 4.5 × 104 111
15 Starfish (bottom) 1400 1870 702 1 × 106 0.45 0 5 × 10−4 1.2 k 5.3 × 10−6 3.9 × 104 77

† All these simulations use the same values for the following parameters (except otherwise described in the text) : the contact stiffness 𝑘n = 104 N/m, the coefficient of friction
𝑐f = 0.6, the density of mass 𝜌 = 103 kg/m3 and the thickness for thin-shell objects ℎ = 1mm. All these examples use StVK model for elasticity of thin shells, except for the
hands and starfish (the neo–Hookean model for elasticity of volumeric bodies).

‡ The given value is used in the case of optimizing remanence alone.
∗ The first line shows the data in the quasi-static optimization and the second line shows the data in the trajectory optimization. They represents different optimization tasks and
share the same set of simulation parameters.

it every forward-simulation frame, due to its great memory over-
head. Instead, we record 𝒙𝑛 at each frame and calculate derivatives
(Appendix A.2) on the fly.

6 EXPERIMENTAL RESULTS
In this section, we evaluate the soundness and the efficacy of our
computational method by a set of experiments, including magnetic
phenomena simulation, quasi-static shape design, trajectory fitting
and motion control. Parameter settings used in the simulations
are summarized in Table 1. These experiments were run on 6-core
3.2GHz Intel(R) Core(TM) i7-8700 desktop with 16 GB RAM.

6.1 Validation
Bending and Twisting. As shown in Figure 2, we first validate the

soundness of our proposed continuum mechanics model through
the bending and twisting behaviors of a thin plate actuated by a
constantly rotating magnetic field. The left end of the thin shell
is fixed, and the remanent magnetization is uniformly distributed
on its right end only, perpendicular to the rest shape and pointing
upward. The elastic material properties are uniformly distributed
over the entire plate.
Five magnetic fields with different strengths, all along the direc-

tion of [1,−1, 0], are applied to the thin plate and intrigue the thin

ALGORITHM 3: Trajectory Optimization
Input: the objective function 𝐹 ( {𝒙𝑛 },𝒌) , the constraints 𝒈 = 0 and

𝒉 = 0, the initial states 𝒙0 and 𝒗0, the number of total frames
𝑠 + 1 and the time step Δ𝑡 .

Output: optimized 𝒌 .
for 𝑖 ← 1 to the maximal number of iterations do

𝒙 ← 𝒙0, 𝒗 ← 𝒗0;
for 𝑛 ← 1 to 𝑠 do

Advance Δ𝑡 by Algorithm 1;
𝒙𝑛 ← 𝒙 ;

end
𝝀𝑥 ← 0, 𝝀𝑣 ← 0;
d𝐹/d𝒌 ← 𝜕𝐹p/𝜕𝒌;
for 𝑛 ← 𝑠 to 1 do

Update 𝝀𝑣, 𝝀𝑥 according to Equation (40);
d𝐹/d𝒌 ← d𝐹/d𝒌 + 𝝀T

𝑣 (𝜕𝒈𝑛/𝜕𝒌) ;
end
Pass d𝐹/d𝒌 to the optimizer to calculate the descent direction;
Use the line-search method to determine the descending step
size;

Update 𝒌;
if |Δ𝒌 | < 𝜂 then Break; // 𝜂 = 10−5

end
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Fig. 11. The octopus adopts various swimming strategies to respond to the changing tunnel environments and produce suitable propulsion force to push itself
through.
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Fig. 12. Relative error of the magnetic energy derived using our shell-based
and Zhao et al. [2019]’s volumetric-based derivation under different de-
formation configurations and resolution of volumetric discretization. The
extents of bending(top) and twisting(bottom) get larger along the x-axis,
with the extreme deformation demonstrated in the zoomed figures.

shell’s bending deformation to different extents. We show results
with increasing magnetic field magnitude from top to bottom in
Figure 2a, with the color indicating the magnitude of the magnetic
energy density at each material point.
As shown in Figure 2b, we further test the thin shell’s twisting

behavior under a rotating magnetic field orthogonal to the long
axis of the plate. The magnetic field with a constant magnitude is
initially pointing upward, and rotates for 720◦ around the horizontal
axis. As Figure 2b shows, the thin plate twisted its body to allow its
remanent magnetization to align with the external magnetic field.
These two examples verify that the magnetic energy tends to align
the remanent magnetization with the external magnetic field as
depicted in Equation 15. Stronger magnetic field would introduce
stronger magnetic energy to counter the elastic potential energy
and consequently achieve better alignment.
We further compare our method quantitatively to the full en-

ergy model [Zhao et al. 2019] by implementing a 3D volumetric
finite element method to model the magnetic thin shell. We first
discretize a thin shell uniformly in the normal direction into 2/4/6
layers. We divide each layer in the tangential direction into 6144
cells, with each of which discretized into 6 tetrahedra. The nodes
and triangles on the middle plane are extracted to construct the
corresponding middle surface of the volumetric thin shell. As such,
we obtain three volumetric meshes with 19𝑘/32𝑘/44𝑘 nodes and
74𝑘/147𝑘/221𝑘 tetrahedra respectively, whose middle surfaces con-
sist of 12288 triangles. For each volumetric model, we assume the
remanent magnetization in the model is constant. We predefined
a series of bending and twisting deformations of the volumetric
model. The vertex positions of the deformed middle surface are

determined using its volumetric model’s nodal position. For each
paired volumetric and thin-shell representation, their magnetic en-
ergies are calculated using Zhao et al. [2019]’s volumetric-based
and our shell-based derivation, respectively. The relative magnetic
energy discrepancy between the above two schemes is defined as
the accumulation of the spatial error divided by the total magnetic
energy of the volumetric model. As shown in Figure 12, on different
resolutions of the volumetric discretization, the energy discrepancy
is consistently subtle even under large deformation.

Magnetic Reptile Robot. As shown in Figure 5, we validate our
forward simulator by actuating a reptile thin-shell robot with a
specifically designed remanent magnetization distribution, which
is drawn from the work of Xu et al. [2019] as shown in Figure 3c.
Under the actuation of a pure rotating magnetic field, the robot
can realize the crawling locomotion as was claimed in the work
of Xu et al. [2019]. By incorporating the frictional contact module
[Geilinger et al. 2020] into our dynamic simulation, the reptile ro-
bot can maneuver over a slope or bump terrains as demonstrated
in Figure 5. The magnetic force triggers the foot sway, while the
frictional contact force pushes the reptile robot to move forward.
It is worth noting that the symmetric and periodic pattern of the
embedded remanent magnetization guarantees the steadily forward
motion actuated by a single rotational magnetic field.

Magnetic Hexagram. We further validate our optimization frame-
work with a quasi-static shape design shown in Figure 4. Motivated
by the experiment setup in the work of Kim et al. [2018], we optimize
the remanent magnetization of a hexagram-shaped shell to realize
two target deformation modes under different magnetic inputs. One
external magnetic field is a uniform vertical field and the other is its
reversion. The remanent magnetization distribution as illustrated in
Figure 3b is derived using our quasi-static optimizer, which shares
a similar pattern as [Kim et al. 2018]. Under the actuation of a pe-
riodically reversed vertical magnetic field or a rotation field, our
derived magnetic hexagram robot exhibits contraction-relaxation
and arm-shaking motions, which are also consistent with the results
of [Kim et al. 2018]. It is worth mentioning that this hexagram shape
has been manufactured and actuated in the real physical world by
Kim et al. [2018]. We recommend readers refer to the supplemen-
tary video for a side-by-side comparison between our simulation
and their real-world experiment, confirming the high fidelity of our
simulation.

Track Fitting. We finally validate our dynamic optimization algo-
rithm on a trajectory fitting problem as demonstrated in Figure 7.
A homogeneous elastic thin plate, with a pre-defined remanent

ACM Trans. Graph., Vol. 41, No. 4, Article 61. Publication date: July 2022.



61:12 • Xuwen Chen, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen

0 200 400 600 800 1000 1200
Frame numbers ( t = 0.02s)

10 4

10 3

10 2

10 1

100

lo
g(

D
is

ta
nc

e 
to

 th
e 

ta
rg

et
 p

oi
nt

)

5.00e-01

2.63e-02 8.14e-03 1.90e-02 2.13e-02

� ��� ��� 	�� 
�� ���� ����

��������������Δt=0.02s�

�
��
	�
��
���
���
�
�

�
��
��
���
��
��
�� 107.21°

15.52° 21.16°

70.50°

Fig. 13. A deforming Kirigami. The Kirigami moves its center point (the tower top when expanded) to 4 consecutive target locations (red balls) while its
bottom is fixed on the floor. In the upper figure, the blue curve plots the distance from the Kirigami’s center point to the target point in each frame; the
marked distances are the recordings at exactly 1 second elapse time after a new target is initiated. As can be seen, whenever a new initiation, the large distance
gets dropped very quickly; usually within 1s it reaches the new target. The blue curve in lower figure depicts the angle between the external magnetic field
direction and the vector pointing from the world space’s origin to the target point.

magnetization distribution (Figure 3a), is fixed on its left end (Fig-
ure 7c). The temporal evolution of the external magnetic field is
optimized to control the trajectory of the middle point on the free
end to follow two assigned analytical curves, which are indicated
using red color in both Figure 7c and Figure 7a. One curve consists
of two perpendicular segments and the other is a quarter circle. We
use a three-termed objective function in this example, with two
measuring how reachable to the start and end points at specific time
instances, and the third one being the summation of point-wise
distances to the target analytical trajectories. The tracking result
and the convergence speed are shown in Figure 7a and Figure 7b,
respectively, which demonstrate that precise dynamic control can
be achieved using our method.

6.2 Quasi-Static Optimization
In this section, we demonstrate a magnetic-material co-design ex-
ample. As shown in Figure 9, a squared thin sheet with 8 fixed
boundary points is specified to enforce deforming to different letter
shapes under a uniform vertical magnetic field. The target shapes
are height maps of letters A and S, and the desired 3D position of
each vertex is extracted from the height map through bi-linear inter-
polation using rest shape position. The objective function evaluates
the total mismatch between the current shape and the target height
map on each vertex. Compared with the results obtained by only

optimizing the thin shell’s magnetic properties, the results obtained
by co-optimizing both remanent magnetization and Young’s mod-
ulus (Figure 9a) yield significantly better designs with clear edges,
sharp corners, and bugling deformation (Figure 9b). This proves
that elastic and magnetic material co-design can significantly in-
crease the controllability of object deformation. Further stitching
the optimized material properties of individual letters, we create
a vividly embossed banner with deformation driven by a uniform
vertical magnetic field (Figure 8).

6.3 Trajectory Optimization
Motion control is more involving than the quasi-static shape design
due to its larger searching space, time correlation between frames,
and the sparse reward signals. In this section we mainly focus on
optimizing external magnetic actuation to realize various goals. An
extra regularization term penalizing the magnitude of the applied
external magnetic field is employed for of all the examples.

Swimming Octopuses. As shown in Figure 10, we validate our
framework by generating effective control policies under multi-
physics circumstances. We use a thin-shell bullet-headed octopus
model with its remanence magnetization uniformly distributed
along each of its six tentacles as shown in Figure 3d. Following
Min et al. [2019], the hydrodynamic force exerted on the octopus is
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Fig. 14. Gesturing hands. (a) shows the rest shape of the hands. Three target gestures are shown in (c) with their respective anchor points marked in green
dots. (b) shows the descending curve of the objective function, leading to convergence. Correspondingly, the hand objects deform and achieve force equilibrium
in (d) with the optimized remanence depicted in red arrows in (c).

formulated as: 
𝒇drag =

1
2
𝜌𝐴𝐶d (𝜙) |𝒗rel |2 𝒅, (42)

𝒇thrust = −
1
2
𝜌𝐴𝐶t (𝜙) |𝒗rel |2 𝒏, (43)

where𝐴 denotes the area of the face, while relative velocity between
surface and fluid is defined as 𝒗rel = 𝒗fluid − (𝒗0 + 𝒗1 + 𝒗2)/3, 𝒏 and
𝒅 are normalized surface normal and relative velocity direction
respectively. Here we set the density of water 𝜌 = 1000 kg/m3.
𝜙 = 𝜋/2 − cos−1 (𝒏 · 𝒗𝑟𝑒𝑙 ) denotes the attack angle that measures
the angle of surface facet facing the fluid flow, and induces the
coefficients 𝐶d and 𝐶t. We set these two coefficients to be the same
for convenience:

𝐶 (𝜙) = 2 sin2 𝜙 . (44)

As for the optimization, since the drag and thrust forces are
differentiable, their gradients can be straightforwardly incorporated
in Equation (37) onto the term which is multiplied by Δ𝑡 . In this
example, we aim for exploring suitable magnetic actuation strategy
to allow the octopus to spend minimum efforts to pass through
the narrow channel within given time constraint. The objective
function contains three terms, including (1) the distance between
the octopus’s mass center and the specified trajectory sample points;
(2) the magnitude of the magnetic field, and (3) a DMP regularization
term to enforce a low-frequency control signal [Pan and Manocha
2018]. For the frame at the moment 𝑡 , the DMP term of its external

magnetic field 𝑩𝑡 is formulated as:

𝐹DMP (𝑩𝑡 , 𝑡,𝝎,𝜶 , 𝜷) =
3∑

𝑖=1

©­«𝑩𝑖
𝑡 −

𝐽∑
𝑗=1
(𝛼 𝑗 cos(𝜔 𝑗 𝑡) + 𝛽 𝑗 sin(𝜔 𝑗 𝑡))

ª®¬
2

,

in which the indices 𝑖, 𝑗 indicate the dimension of variable, and the
number of trigonometric-function pairs respectively.We chose 𝐽 = 5
in our practical implementation. The optimization variables include
both the temporally varying magnetic field and the frequencies(𝝎)
and amplitudes(𝜶 , 𝜷 ) of the DMP regularizer. Our results show that
our optimizer can discover effective swimming strategies to adapt
the octopus’ thin-shell body to the environment without any prior
guidance. According to the comparison results shown in Figure 10,
the octopus adopts a high-frequency strategy to squeeze out of the
narrow tunnel by relying on the frictional contact force with the
environment. In a different strategy, a more stretchable posture is
employed to gain speed from the hydrodynamic force for the wider
tunnel environment.We refer the reader to our supplementary video
for more details. On an irregular tunnel terrain, the octopus takes
varying swimming strategies that continuously adapt itself to the
local environment and produce suitable propulsion forces to go
through the tunnel more efficiently.

Kirigami Tower. Kirigami structures are featured by their large
compression ratio which is specifically suited for a highly compact
environment. In this example (Figure 13), we apply our quasi-static
optimizer to optimizing the remanence magnetization distribution
which could react to a given vertical uniform magnetic field and
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Fig. 15. Jumping starfish. The three rows show three different settings: the orange starfish in the top row is three times mass density as the green ones in
the bottom two rows, and the third row conditions an objective function with less penalty of the magnitude of the external magnetic field. The starfish is
set to jump over the pink arrows. With different settings, the starfish nevertheless successfully reaches the target, however through different maneuvers
automatically generated through optimized magnetic fields.

Fig. 16. Beating hearts. The left column shows the surfaces with magnetic
material in blue (the lower half for the above one, and the ribbon area for
the bottom one), with the silver arrows depicting the optimized magnetic
remanence in these areas. The hearts get expanded (horizontally) and con-
tracted (vertically elongated) responding to the optimized magnetic fields,
shown in the middle and right columns, respectively.

drive the Kirigami structure stretching as much as possible in ver-
tical direction. Next, by taking the derived remanence magnetiza-
tion as known, we perform a trajectory optimization on the time-
dependent external magnetic field for a fast-reaching task. Four
target points (indicated using red ball in Figure 13) are randomly
placed in the surrounding 3D space. They are placed consecutively
at predefined time instances. The objective function measures the
distance from Kirigami’s center point to the active target point start-
ing 𝑜𝑛𝑒𝑠𝑒𝑐𝑜𝑛𝑑 after the new target initialization, until the target is
replaced. The total magnetic field strength is treated as a regular-
ization term in our objective function. As the curve in Figure 13
shows, every 1 s after the target appears, the center of our Kirigami

structure can reach the target point with extremely high accuracy.
The tiny fluctuation of position error for the remaining time con-
firms that our optimized control policy can effectively suppress large
vibration that would have been introduced by sudden maneuvers.
Please refer to the supplementary video for visual evidence.

6.4 Volumetric Objects
Our magnetic-elastic model is not limited to simulations of thin-
shell objects, but can also be integrated into any state-of-the-art
FEM-based simulation framework to imitate volumetric soft objects
with a magnetic thin layer, with the only change is for all the surface
triangles, their potential energies need an extra term from magnetic
side. This model provides new capability on realizing unthehered
active exoskeleton control.

Gesturing Hands. As illustrated in Figure 14, we first experiment
on a static shape-fitting problem. Initially, the volumetric hand
model has a homogeneous elastic material distribution. Quasi-static
optimizations are conducted to find three sets of remanence magne-
tization distribution on the hand surface, which allow the hand’s rest
shape to deform to three given gestures driven by a given vertical
magnetic field. To alleviate the side effects caused by the distorted
mesh discretization, we designate a set of anchor points on each
finger and evaluate the shape similarity base on these points.This
sparse position constrains help our optimizer converge to a more
natural result.

Beating Hearts. As demonstrated in Figure 16, a heart exoskeleton
is designed to enhance the heart’s beating deformation. Similar to
the previous example, we conduct a quasi-static optimization to find
the optimized surface remanence magnetization distribution which
can fit to the most contracted shape driven by a constant magnetic
field. The only difference is that the surfaces allowed to maintain
magnetic material are restricted to the areas highlighted using blue
color in the left column of Figure 16. Through the comparison shown
in Figure 16, with optimized remanence magnetization, the heart
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Fig. 17. The two curves show the applied external magnetic field in the first 50 frames that facilitates the orange starfish’s jumping strategy, as depicted in the
top row. The figures show the correlation between the external magnetic stimuli and the actions taken in the process of starfish’s taking-off in details.

delivers a strong beating sequence driven by a periodically switching
magnetic field.

Jumping Starfish. The starfish example in Figure 15 shows that
our proposed trajectory optimization algorithm can be employed to
deform soft objects through magnetic thin layers on their surfaces.
The external magnetic field is optimized to make the starfish jump
over an obstacle at designated time, depicted as pink arrows in Fig-
ure 15. The green and orange starfishes are identical with respect to
their geometry and elastic material distribution, but the orange one
is 3-times heavier than the green one. The differentiable frictional
contact model mentioned in the Section 6.1 is adopted here as well.
Through the results shown in Figure 15, the starfish is optimized
to gain an initial take-off momentum through the frictional con-
tact with the ground. This strategy is more obvious for the heavier
starfish as shown in Figure 17; in the first stage ((a)–(b)), the starfish
lifts its tentacles driven by an upward magnetic field and stores
elastic potential energy in its body; then as the magnetic field turns
downward, the stored elastic potential energy is quickly released,
which makes the starfish suddenly flap its tentacles down to hit the
ground with high speed. Such strong impact helps the starfish gain
initial take-off momentum in both vertical and horizontal direction.

7 CONCLUSIONS AND DISCUSSIONS
We have proposed a novel computational framework to design mag-
netoelastic thin shells and demonstrated a broad array of applica-
tions. Our main contribution is finding an effective computational
solution to support both forward simulation and inverse design
tasks of a new category of physical objects that are on the periphery
of the previous literature. For forward simulation, we developed
the first continuum mechanics model based on the Kirchhoff–Love
thin-shell model to characterize the behaviors of a magnetalelastic
thin shell under external magnetic stimuli. The underlying consti-
tutive model decouples the overall potential energy into its elastic

and magnetic components, and the magneto-mechanical coupling
arises only from the deformation-induced variation of the remanent
magnetization in the applied magnetic field. Based on this model,
we provide a complete numerical recipe, which includes the dis-
cretization formula and the Hessian matrix derivation. Due to its
conciseness, our method can be easily integrated into the existing
finite-element thin-shell framework to support novel magnetic phe-
nomena simulations. For the inverse design problems, we build a
fully differentiable simulation framework, in conjunction with its
adjoint solvers, to support a plethora of design tasks, ranging from
magnetoelastic soft robots, functional Origami, to artworks and
metamaterial designs. For both static and dynamic PDE-constraint
problems, our differentiable solver improves the optimization per-
formance on magnetoelastic thin-shell structures.
The ideal deformation behaviour of magnetoelastic material is

nonlinear, incompressible, and time/strain rate-dependent. Our pro-
posed magnetoelastic constitutive model possesses many simpli-
fications. The hysteresis loop is not considered in our model. A
conventional finite element frame like what we employed in this
paper has great difficulties on modeling incompressible deforma-
tions. Moreover, when the applied magnetic field is stronger than
the coercivity of the immersed magnetic material, the proposed
continuum mechanics model will no longer be applicable, because
the nonlinear magnetization is not negligible anymore. Last but not
the least, the influence of the magnetization on elastic materials
property change should also be involved into the current framework.
Currently, we use a gradient-based method MMA for parameter
fitting. We plan to explore other optimization schemes to avoid any
local minimal trap.

Because the relevant facility has limited accessibility, this work fo-
cuses on tackling the computational challenges and aims to provide
a simulation tool to open the stage for the potentially close collabo-
ration among graphics, design, and fabrication. Nevertheless, it is
worth discussing here the feasibility of our optimization approaches
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in physical-world fabrication. An abrupt residual magnetization can
be realized by direct ink writing of an elastomer composite contain-
ing ferromagnetic microparticles [Kim et al. 2018]. The spatially
varying bending stiffness can be realized by embedding indentations
and local structures, which has been a common practice in Origami
design and fabrication. From the perspective of algorithm itself,
additional regularization terms which penalize the abrupt material
or magnetic field change need to be involved into the objective
function to ensure the design’s fabricability.
Another possible topic for further investigation is incorporat-

ing topological optimization into the current framework, which
will facilitate more complex structures and functionalities of the
design. At the same time, we plan to explore high-performance im-
plementation of our thin-shell solver in order to support large-scale
topological optimization applications. This is a challenging problem
to solve because the dimension of the design space would be signifi-
cantly enlarged. Lastly, we are also considering incorporating our
fully differentiable simulator and the accompanied adjoint solvers
into the reinforcement learning frameworks, which can extend our
simulator to accommodate the various control policy learning tasks.
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A PHYSICAL ANALYSIS

A.1 Lagrangian Formulations of Magnetostatics
We integrate Equation (9) over an arbitrary volumeD with suitably
regular boundary 𝜕D and apply Gauss’s theorem to obtain∫

𝜕D
𝑩 · 𝒏 d𝑆=

∫
D
∇ · 𝑩 d𝑉 = 0. (45)

Considering that 𝒏 d𝑆 = 𝐽 𝑭−T𝒏̃ d𝑆 , we acquire∫
𝜕D

𝑩 · 𝒏 d𝑆 =

∫
𝜕D̃

𝑩 · 𝐽 𝑭−T𝒏̃ d𝑆 =

∫
𝜕D̃

𝐽 𝑭−1𝑩 · 𝒏̃ d𝑆 , (46)

which means∫
𝜕D̃

𝐽 𝑭−1𝑩 · 𝒏̃ d𝑆=
∫
D̃
∇̃ · 𝐽 𝑭−1𝑩 d𝑉̃ = 0 (47)

by Gauss’s theorem. Since D is also an arbitrary volume, the equa-
tion

∇̃ · 𝐽 𝑭−1𝑩 = 0 (48)
holds, which suggests us to define 𝑩̃ = 𝐽 𝑭−1𝑩.
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Similarly, we integrate Equation (10) over an arbitrary (but suit-
ably regular) open surface S and then apply Stoke’s theorem to
obtain ∫

𝜕S
𝑯 · d𝒙 =

∫
S
(∇ × 𝑯 ) · 𝒏 d𝑆 = 0. (49)

Considering that d𝒙 = 𝑭d𝒙̃ , we acquire∫
𝜕S

𝑯 · d𝒙 =

∫
𝜕S̃

𝑯 · 𝑭d𝒙̃ =

∫
𝜕S̃

𝑭T𝑯 · d𝒙̃ , (50)

which means∫
𝜕S̃

𝑭T𝑯 · d𝒙̃ =

∫
S̃
(∇̃ × 𝑭T𝑯 ) · 𝒏̃ d𝑆 = 0 (51)

by Stoke’s theorem. Since S is also an arbitrary open surface, the
equation

∇̃ × 𝑭T𝑯 = 0 (52)
holds, which suggests us to define 𝑯̃ = 𝑭T𝑯 .

As to the magnetization intensity 𝑴 , since the effective magnetic
charge density 𝜌M = −∇·𝑴 is conservative (𝜌M = 𝐽 𝜌M), there exists
a conservation equation as follows:

∇̃ · 𝑴̃ = 𝐽∇ ·𝑴 . (53)

Observing the above derivation of 𝑩̃ = 𝐽 𝑭−1𝑩, it is not hard to see
that

∇̃ · 𝑨̃ = 𝐽∇ · 𝑨 = 𝐽∇ · 𝐽−1𝑭 𝑨̃ (54)
holds for any vector field 𝑨, due to d𝑉 = 𝐽d𝑉̃ . For this reason, it is
natural to define 𝑴̃ = 𝐽 𝑭−1𝑴 .
More detailed derivations and applications can be seen in the

work of Dorfmann and Ogden [2014].

A.2 Derivatives in Forward Simulation
The Jacobian and Hessian terms of discrete thin-shell elastic energy
have been introduced in previous work, and we refer readers to
the work of Grinspun et al. [2006] or the work of Tamstorf and
Grinspun [2013] for a clear derivation. Next, we will concentrate on
the derivatives of discrete thin-shell hard-magnetic energy, which
is novel for the community of computer graphics.

For a triangle face with its three vertices located at 𝒙̃0, 𝒙̃1, 𝒙̃2 in the
material space, and 𝒙0, 𝒙1, 𝒙2 in the world space after deformation,
we define

𝑿̃ =
(
𝒙̃1 − 𝒙̃0 𝒙̃2 − 𝒙̃0

)
, (55)

𝑿 =
(
𝒙1 − 𝒙0 𝒙2 − 𝒙0

)
. (56)

Then the deformation gradient can be represented as

𝑭 = 𝑿 (𝑿̃T𝑿̃ )−1𝑿̃T + 𝒏𝒏̃T. (57)

Substituting 𝑭 into Equation (24), we obtain

𝜀magnetism = −𝐴̃ℎ
(
𝑿

(
𝑿̃T𝑿̃

)−1
𝑿̃T + 𝒏𝒏̃T

)
𝑴̃r · 𝑩applied

= −𝐴̃ℎ𝑿
(
𝑿̃T𝑿̃

)−1
𝑿̃T − 𝐴̃ℎ𝒏𝒏̃T𝑴̃r · 𝑩applied. (58)

Equation (58) actually separates the magnetic energy into two parts,
with the first part denoting the part contributed by remanence
component parallel to the face while the second part denoting the
part contributed by remanence component perpendicular to the face.
Denoting the two parts of magnetic energy as 𝜀1, 𝜀2 respectively,

then 𝜀magnetism = 𝜀1 + 𝜀2. Use [𝒆] to denote the cross product matrix
of the 3D vector 𝒆, and vec(𝑬) to denote the corresponding vector
of the matrix 𝑬 concatenated by column, and additionally define

𝑷 =
1
2𝐴

(
𝑩applied − 𝒏𝑩T

applied𝒏
)
, (59)

𝑸 =
(
[𝒙2 − 𝒙0] −[𝒙1 − 𝒙0]

)T . (60)

Here 𝑷 ∈ R3×1, 𝑸 ∈ R6×3. Taking the derivative of the above
equation, we acquire their Jacobian terms as

d𝜀1
d𝑿

= − 𝐴̃ℎ
((
𝑿̃T𝑿̃

)−1
𝑿̃T𝑴̃r𝑩

T
applied

)T
, (61)

d𝜀2
d vec(𝑿 ) = − 𝐴̃ℎ𝑸𝑷 . (62)

Equation (61) has nothing to do with 𝑿 , thus the Hessian matrix is
only yielded from the second term of Equation (62):

d2𝜀magnetism

d vec(𝑿 )2
=

d2𝜀2
d vec(𝑿 )2

= − 𝐴̃ℎ
(
𝒏̃ · 𝑩applied

) (
𝑸

( 3
4𝐴2 𝒏𝑩

T
applied𝒏𝒏

T

− 1
4𝐴2

(
𝒏𝑩T

applied + 𝑩applied𝒏
T − 𝑩T

applied𝒏𝑰
) )

𝑸T

+
(

0 [𝑷 ]
[𝑷 ]T 0

) )
, (63)

where 𝑰 denotes the 3 × 3 identity matrix.
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