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Figure 1: Our parametric material model learns a correction to a nominal material model from kinematic data alone, allowing us to
accurately capture the nonlinearity of different constitutive material models. Left: classical nonlinear constitutive material. Middle: user

designed elasticity and damping. Right: real world material.

Abstract

Commonly used linear and nonlinear constitutive material models in deformation simulation contain many simplifications and
only cover a tiny part of possible material behavior. In this work we propose a framework for learning customized models of
deformable materials from example surface trajectories. The key idea is to iteratively improve a correction to a nominal model
of the elastic and damping properties of the object, which allows new forward simulations with the learned correction to more
accurately predict the behavior of a given soft object. Space-time optimization is employed to identify gentle control forces
with which we extract necessary data for model inference and to finally encapsulate the material correction into a compact
parametric form. Furthermore, a patch based position constraint is proposed to tackle the challenge of handling incomplete
and noisy observations arising in real-world examples. We demonstrate the effectiveness of our method with a set of synthetic
examples, as well with data captured from real world homogeneous elastic objects.

CCS Concepts

o Computing methodologies — Collision detection; @ Hardware — Sensors and actuators; PCB design and layout;

1. Introduction

The simulation of deformable objects is ubiquitous in computer
graphics and robotics research due to the large number of varied ap-
plications, including animation, movie making, medical treatment
and manufacturing. These applications benefit from high fidelity
deformation simulation, which is dependent upon the underlying
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constitutive material model. Subsequently, the material parameters
must be carefully tuned in order to fit empirical data. Data-driven
methods have recently exhibited great potential in this direction.
Advanced scanning technologies can be used to faithfully capture a
deformation behavior under external force, and in turn the data can
be used to estimate the parameters of the mathematical model.

However, there is currently no standard method for choosing the
appropriate constitutive models, especially for large deformations,
real-world materials, heterogeneous models, and artist designed
cartoon physics. The situation for modeling damping is even worse.
Indeed, there is no agreement about models in the mechanical en-
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gineering literature which can describe various damping effects in
a unified way. Many use the Rayleigh model, which can be inade-
quate for visual purposes [XB17]. Based on these observations, in
this paper we propose a more general material inference framework
obtained by directly learning constitutive laws rather than fitting
parameters from real-world motion data. Learning a constitutive
model is challenging because: (1) the model should be able to en-
capsulate all the variations of material properties in a generic way;
(2) there may be no obvious source of training data; and (3) real-
world motion data is typically sparse and noisy. We address these
challenges and present the following contributions:

e a constitutive material model designed as a combination of em-
pirical baseline model and a parametric correction;

e an inverse learning framework capable of learning a complex
constitutive material from sparse motion trajectories; and

e a differentiable patch based position constraint for probabilistic
correspondences, which allows our system to work faithfully on
real-world captured data.

Fig. 1 shows a preview of our approach and results. We demon-
strate the performance on several problems, including synthetic ex-
amples, coarsening applications, and captured data. The variety of
results described in Section 7 leads us to believe that our work con-
tributes a useful technique and an important step in advancing data-
driven constitutive elastodynamic force models.

2. Related work

Data-driven material parameter optimization offers great potential
for computer graphics applications, such as fabrics, soft objects,
and human organs and faces [PDJ*01; SLS04; BT07; WORI1;
MBT#*12; BBO*09]. Bickel et al. [BBO*09] fit material param-
eters with an incremental loading strategy to better approximate
nonlinear strain-stress relationships. Wang et al. [WOR11] pro-
pose a piecewise linear elastic model to reproduce nonlinear,
anisotropic stretching and bending of cloth. Other appropaches di-
rectly optimize nonlinear stress-strain curves based on measure-
ments [MBT*12], and estimate internal friction [MTB*13]. Miguel
et al. [MMO16] model example based cloth and elastic solid mate-
rials with energy functions.

A common limitation with previous methods is that they require
a dense force displacement field. While Bhat et al. [BTH*03] avoid
the need for force capture by using video tracking of cloth, they
still assume a trivial cloth reference shape. Yang et al. [YLL17]
present a learning-based algorithm to recover material properties
of cloth from videos, using training data sets generated by physics-
based simulators. Here, material type estimation is the focus due
to inconsistencies between real and synthetic data and sparse ma-
terial space sampling. Davis et al. [DBC*17] estimate material and
damping properties by extracting small vibration modes from high-
speed and regular frame-rate video.

Both Wang et al. [WWY*15] and the more recent Hahn et
al. [HBBC19] estimate material properties from partially observed
surface trajectories of an object’s passive dynamics. A gradient-free
Nelder-Mead optimization algorithm is employed by Wang et al.,
whereas Hahn et al. compute the gradient with respect to material
parameters using either direct sensitivity analysis or an adjoint state

method. Our work has a similar setting, but focuses on correcting
the errors that arise when starting with simple elastic and damping
force models and differs in the methods used in the pipeline.

Another popular trend in computer graphics is to directly fit
parametric functions as a material description. Xu et al. [XSZB15]
provide a method to design isotropic and anisotropic (orthotropic)
nonlinear solid elastic materials using a piecewise spline interface,
which can provide local control on deformation behavior. A hyper-
elasticity model based on energy addends [MMO16] allows mod-
eling of various nonlinear elasticity effects in a separable manner.
Instead of explicitly modeling the stress-strain relationship, Martin
et al. [MTGG11] and Schumacher et al. [STC*12] promote an art-
directed approach to solid simulation, which constructs a manifold
of preferred deformation examples, to which the object is guided.

Also related are coarsening techniques, for instance, in applica-
tions for computational design for fabrication [CLSM15; PZM*15;
CLMK17; CLK*19], where equivalent physics based models are
important. Kharevych et al. [KMODO09] take an energy based ap-
proach to coarsening composite elastic objects through the use of
global harmonic displacements. Nesme et al. [NKJF09] create non-
linear shape functions and projected fine-level mass, stiftness, and
damping matrices to produce coarse composite elements, while
Torres et al. [TREO16] introduce an improved element based coars-
ening method that deals with corotation.

In comparison to elasticity modeling, few publications have fo-
cused on the design of damping models. Xu et al. [XB17] present
a method for designing anisotropic and/or nonlinear damping ef-
fects. Banderas et al. [MSBAO18] model damping based on dis-
sipation potentials using strain rate to control damping. (We use
a similar approach.) Targeting cloth hysteresis effects, Miguel et
al. [MTB*13] propose an internal friction model based on an aug-
mented reparameterization of Dahl’s model. In our work, inspired
by Xu et al. [XSZB15], we use principal stretches to formulate non-
linear elastic and damping force corrections. However, instead of
using splines, we adopt radial basis functions (RBF) to parameter-
ize the material correction.

Neural networks have also been proposed as solutions in the
study of diverse phenomena which are not as yet accessible to phys-
ical modeling [GGIW91; GPZHA9S]. Jung and Ghaboussi [JG06]
modeled rate-dependent materials. Stefanos and Gyan [SG15] used
the length of the strain trajectory traced by a material point, also
called intrinsic time, as an additional input parameter in training
because of its importance in cyclic and transient loading situations.
In the computer graphics community, deep learning technology for
deformation modeling has gradually gained more attention. The
DeepWarp technique [LSW*18] attempts to learn a mapping from
a linear elasticity simulation to its nonlinear counterpart. Fulton et
al. [FMD*19] perform time integration of the elastodynamic sys-
tem in a learned nonlinear reduced latent space, which is repre-
sented using a neural network. In comparison, our work focuses on
the underlying constitutive model for FEM simulation and employs
an RBF representation.

3. Overview

An overview of our progressive material learning framework is

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.



Bin Wang, Yuanmin Deng, Paul Kry, Uri Ascher, Hui Huang, Baoquan Chen / Learning Elastic Constitutive Material and Damping Models

Nominal

v
Space-time Correction Mo[de'
—_— p. L =—p  Function ——>
Optlmlzatlon meg Parametric

Surface Trajectory Function

mi ’mﬂ M

Control Force Stress Ct

Forward
Simulation

Space-time Optimization

Forward Basis

= Evaluation Simulation Extraction

Sparse Reduced
4 Space-time

: Optimization
Constraint Forward

. . —
Simulation

(b)

Figure 2: Schematic overview of our data-driven parametric material learning framework. Our algorithm iteratively learns a correction to
a nominal material model that allows us to accurately reproduce the captured trajectory, even when the nominal model differs significantly

from the corrected one.

given in Fig. 2(a). Under this framework, the material model is rep-
resented in a two component manner, as described in Section 4. A
baseline constitutive elastodynamic model, called nominal model,
is assumed to be given. The baseline model correction is encapsu-
lated in a parametric function. The core of our approach is to infer
this parametric function through trajectory fitting.

The input to the system is a set of surface trajectories of an ob-
ject moving dynamically, unforced, in response to an initial per-
turbation. The main loop alternates between solving a space-time
optimization problem (Section 5), and fitting a correction function
(Section 6). The space-time optimization injects a gentle control
force to keep the system trajectories close to desired input trajecto-
ries while still obeying Newton’s physical laws. The key insight is
that this gentle control force identifies what is currently missing due
to material model inaccuracy and should be compensated using the
correction model. Additionally, we solve a local overdetermined
algebraic problem to identify the missing corrective stress on each
tetrahedron from the vertex control forces, taking all the frames
into consideration. Then, the best fit correction model is distilled
from the strain, strain rate, and stress data. Since the correction is
added to both the forward simulation and the space-time optimiza-
tion, it in turn improves how the forward simulation matches the
example trajectory. Trajectory similarity is monitored to determine
the convergence of the overall learning algorithm. As the iterations
progress, the correction is gradually refined to provide better accu-
racy.

To enhance performance, we use sparse reduced space-time opti-
mization (Section 5.1) as illustrated in Fig. 2(b). The reduced basis
is extracted by performing singular value decomposition on “snap-
shots” of the full simulation result at the beginning of each itera-
tion using the refined material model. Moreover, a constrained for-
ward simulation (Section 5.2) is performed to provide a good start-
ing point for the space-time optimization procedure, which quickly
converges to a solution that identifies a plausible trajectory for un-
observed nodes and the corresponding gentle control forces.

4. Material Model

Even though there are plenty of empirical hyperelastic constitutive
material models such as the nonlinear St. Venant-Kirchhoff, neo-
Hookean, Ogden or Mooney-Rivlin materials, they do not account
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for all deformation phenomena that may arise. Choosing a correct
model to fit measurement data is already a difficult task. Our data-
driven approach allows us to learn a parametric material model that
can encapsulate a wide range of elastic and damping properties in
a compact and unified correction function.

4.1. Nominal Material Model and Assumptions

Our deformable models are constructed using linear shape func-
tions. In order to handle large deformations of soft objects, the
nominal material is described in terms of the widely adopted coro-
tated linear FEM, formulated using principal stretches [XSZB15].
Corotated linear elasticity models combine the simplicity of the
stress-deformation relationship in a linear material with just enough
nonlinear characteristics to secure rotational invariance, and with-
out suffering the non-physical zero stress configurations of St.
Venant-Kirchhoff materials under extreme compression.

The deformation gradient F for each tetrahedron is diagonalized
by SVD, F = UF VT, and the first Piola-Kirchoff stress is com-
puted with the principal stretches, P(F) = 2u(F — 1)+ §r(E — DI,
where u and { are Lamé parameters. The diagonal stress is then
transformed back to the world frame, P = U P(F )VT. An element’s
contribution to its vertex forces is PB;,, where B, is the inverse
material space shape matrix (see [SB12]). Summing the contribu-
tions of all elements, we can build a large sparse matrix B, which
combines the entries in U, V, and By, and can be multiplied by
the block vector of all element diagonal stresses p to give a block
vector of all vertex forces fe; that is, fe = Bp.

We include Rayleigh damping in our nominal model, with forces
computed by fqy = Dx = (agM + o1 K)x, where D is the damping
matrix, x are the FEM vertex velocities, M is the lumped mass ma-
trix, and K is the stiffness matrix assembled from per-element stift-
ness matrices. The nominal model parameters are assigned manu-
ally or computed using the method of Wang et al. [WWY*15].

4.2. Parametric Material Correction Model

Our parametric material correction model is designed to encapsu-
late a correction for the elasticity and damping inaccuracies. In-
stead of explicitly adjusting Young’s modulus and Poisson’s ratio
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for elasticity compensation, we directly manipulate the relation-
ship between strain and stress. Similar to the work of Irving et
al. [ITFO4], the stress correction is computed in a rotated frame
from diagonalized strain as AP(F), and then rotated back to current
world frame by the same orthogonal matrices U and V used to di-
agonalize F. The per element stress corrections in the world frame
are P, = UAP(F )VT. Using principal stretches reduces the com-
plexity of our function approximation problem, yet it still permits
complex stress corrections and strain dependent damping. Specifi-
cally, we write the strain dependent stress correction employing an
RBF with m basis functions and corresponding weights wy, € R as

widr (F). (1

™=

AP(F) =
k

1

Therefore, all vertex elastic force corrections can be written as
Afe = BAp, 2)

in which Ap concatenates the block vector of all element diagonal
stress corrections.

We also include an element-wise damping correction through a
strain dependent modification Acij (F) of the Rayleigh parameter
o1. Analogous to Eq. 1, the correction is also encapsulated in an
RBF parametric representation as

Aoy (F) =Y wi'ox(F), 3)
i=k

with weights wg‘ € R. Summing up the contributions from all ele-
ments, we can build a large sparse damping correction matrix AD.
The effective damping correction force is then represented as

Afy = ADx. 4)

As demonstrated in Fig. 2(a), the weights w and w*' are updated
during each optimization iteration.

5. Force Correction Estimation

The general philosophy of the algorithm described in this section
is to gradually learn the corrections necessary to produce forward
simulations that replicate the captured desired trajectory. The pur-
pose of using space-time optimization, in turn, is to compute a set
of gentle control forces that drive the simulation to fit captured data.
Consequently, information to correct our currently estimated para-
metric material model such that the simulation follows captured
data can be distilled from the space-time optimization result.

5.1. Sparse Reduced Space-Time Optimization

Many variants of the space-time constraints approach of Witkin and
Kass [WK88] have been proposed. To deal with the large number
of degrees of freedom in our deformable models, we use reduction
and sparse constraints taking inspiration from recent work [BSP09;
STSH14]. We compute a reduced basis ® using a proper orthogonal
decomposition (POD) data driven method, which performs princi-
pal component analysis (PCA) on the forward simulation trajectory
with the provided initial conditions for our current approximation

of the material model. T We solve the space-time optimization as an
error minimization problem with an objective function that consists
of two parts: physical, and sparse trajectory misfits. In practice, we
optimize with reduced coordinates z;, where x; = ®z;. Thus, ap-
proximating the acceleration using a finite difference scheme the
reduced physics errors at each time step are

Ci= h2d'MB(zi_ —2zi+2i1) — D fou
— @By 1Pyt — @ Di 1 P2y 5)
— @By APyt —  AD P2y

This equation corresponds to our forward integration method be-
cause the force term is evaluated at the end of the time step. Next,
the desired example trajectory is sparse because it comes from an
incomplete scan of the surface. Letting vector s; contain the desired
point positions at time step i, we can write the sparse trajectory er-
ror at each time step as

Czi = T](SCI)Z,' — Si)7 (6)

where the wide sparse selection matrix S extracts the components
of the desired positions by having one non-zero entry per row. The
scalar m is used to specify the weight of position constraints given
that the combination of physics and position constraints are solved
in a soft manner.

Letting C(z) concatenate all physics errors C¢ on top of all po-
sition errors Cz, our goal is to find a reduced trajectory z that
minimizes |C||,. We solve this problem (minimizing }|/C||3) us-
ing quadratic programming, in which we need to evaluate the ob-

T

jective’s gradient (aa—(z:) C. We do not assemble the Jacobian matrix

%—S directly. Instead, we use the chain rule and keep it in the factored
dC dx 24

form §- 5%, where g—z simply contains copies of the basis matrix ®.
The matrix % has a very simple part that links vertices at different
time steps through the acceleration term, and a more complex part
where the chain rule must be applied to compute the force gradient.
This would normally include a contribution from the parametric
material correction, but generally we note better convergence when
we omit it, leaving only the gradient of the nominal material. The
reason is that the first order derivative of an inaccurate paramet-
ric function may introduce more noise into the system. Because
we still have the parametric material correction on the right hand
side, we only change the convergence and not the solution. Thus,
this second part sprinkles off diagonal terms into the matrix, link-
ing vertices that are adjacent to a common element. The matrix BaCXz
simply contains copies of the selection matrix S. While the Jaco-
bian matrix is very large, it is also very sparse. We compute the
solution using the CUSP [DBOG14] library’s sparse least square
conjugate gradient implementation on GPU.

We check for convergence to solution z* by monitoring our
progress in reducing errors C(z). Once converged, the physical mis-
fits C¢ provide the necessary control forces to refine our current
parametric material correction model. That is, given an optimized

T An alternative would be to formulate the basis by linear combination of
a much larger set of modes, and optimize the weighting matrix simultane-
ously [LHG*14].
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(a) Tracking process

(b) Probability of correspondence

Figure 3: Point cloud tracking and shape similarity matching: (a) the physics-based probabilistic tracking method gradually deforming the
mesh to fit the point cloud; (b) the final maximum correspondence for each point in the point cloud to a selection of 10 surface points, which
shows tight localized correspondence between the point cloud and the selected points.

reduced trajectory z, the gentle control force is computed as
fiig= h 2O M®(zi 1 — 2z +2ip1) — D four
— @By 1yt — @ Dis 1 P2y @)
— @By | Apyi1 — @ADL P2y

While it may be desirable to solve for control stresses at each el-
ement, as these are what is required for learning a correction, our
approach permits an easier solution that directly provides a control
force at each vertex.

5.2. Warm Start

The sparse reduced space-time optimization needs a reasonable ini-
tial guess (starting trajectory). While the forward simulation with
the current parametric material correction could serve this purpose,
we find it valuable to simulate a trajectory that is also constrained
to follow the desired surface motion. For the forward simulation,
we solve at each step the equation

AAv = hf, (®)

where f = BApP + ADx + fext. Here Ap is the block vector of
stress corrections, AD is the Rayleigh damping matrix correc-
tion at the current time step, fexc is the external gravity force, and
A =M —hD — h?K, where D and K are assembled using the nom-
inal model. Many of our models are rigidly attached to the world,
and we typically remove these degrees of freedom from the system.
We can further divide the vertices into two groups,

Auu Auc Avy fu
=h 9
(Acu Acc) (AVC) (fc)7 ( )

where we have treated the observable surface nodes as dynamic
boundary constraints, and use subscripts u for unconstrained and
c for constrained. Note next that Avc at time step i can be directly
computed by h_l(x,-,l — 2%; + X;11), in which the positions are
already given as observation constraints. Concequently, the sec-
ond block row can be discarded, leaving a smaller system to solve,
namely,

AuuAvy = hfy — AucAve. (10)

Here, the effect of dynamic boundary constraints are taken into
consideration on the right hand side. We solve these large sparse
systems using PARDISO [PSLG14; PSA14].

(© 2020 The Author(s)
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5.3. Space-time Optimization on Noisy Real Data

For real observations, the data can be incomplete (i.e., only par-
tial surface scans), noisy, and in the form of unparameterized point
cloud. Thus, the exact desired point positions s; at each time step
i needed in Eq. 6 are no longer available. Since now each sur-
face tetrahedral mesh node corresponds to a local point cloud patch
when it is close to the surface scans, we change the node-wise posi-
tion constraints in the space time optimization to instead be patch-
based position constraints. We do this at every iteration for finding
z* in a manner inspired by the physics-based probabilistic tracking
method proposed by Schulman et al. [SLHA13] and extended by
Wang et al. [WWY*15].

For a frame consisting of N points at a given time instant (time
step i), we denote point coordinates in the point cloud by ¢, for
n = 1...N, and node positions in the tetrahedral mesh surface by
s for k = 1...K. Let the probability of correspondence between
the point cloud and the mesh nodes be py,. Assuming that ¢, is
normally distributed around sy as ¢, ~ N (s, X;) with an isotropic
covariance matrix ¥, = 671, then we compute the probability that
nodal value s, of the surface mesh corresponds to the observation
Cp as

Py = 1 exp <71(cn — sk)TZfl (en— sk)) .

Vel 2 ’

Note that parameter G is chosen to be approximately the distance
between nodes on the object. We only assign point ¢, to sy if the
probability P, is above a threshold. Fig. 3 shows how the mesh
gradually conforms to point cloud data, along with final probabili-
ties of correspondence between the point cloud and selected exam-
ple nodes.

Now, we can reformulate the trajectory constraints of Eq. 6 as a
weighed distance between each node and its corresponding patch
of point clouds as

Czi EnZPknEk_l(Cn_q)kzi)v (In
k,n

where @, gives the position of surface point k from reduced coor-
dinates z;, i.e., sy = P;z;. The Jacobian matrix required for space-
time optimization of this modified position error is straightforward
to compute.

During space-time optimization, the correspondence probability
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between point cloud and mesh surface is updated, which allows the
mesh nodes to move freely across on the point cloud surfaces. This
manner of building parameterized surface trajectories effectively
uses the point cloud data as a soft constraint on the nominal model,
and permits reasonable estimation of surface node trajectories.

We use a very similar approach for building the initial starting
point for space time optimization from real data. The tracking pro-
cedure in Fig. 3 clearly demonstrates that the mesh can track the
point cloud data correctly, even in the presence of large discrepan-
cies.

6. Parametric Material Correction

This section describes how we fit the parametric material correction
model defined in Section 4.2 using the strain and the vertex control
force trajectory derived from the space-time optimization.

We assume to always have a variety of deformations across ele-
ments and time (i.e., the principal stretches in the data we are fit-
ting are not all the same). With k-means clustering, we select m
stretches to define RBFs ¢y (F) = || — |, for the cluster centers
k=1,...,m. Then, for each time step i, we can assemble a tall ma-
trix R; containing the basis functions evaluated with £ for all ele-
ments, and write an equation for computing interpolated stress cor-
rections as Ap; = R;jw, where the unknown weights are assembled
here into a block vector w. When damping correction is taken into
consideration, the same tall matrix R; is used as well for Rayleigh
correction interpolation weights w*!.

These corrections must explain the gentle forces of Eq. 7, that is,

fi:BRiW+ Z(RUWOLI)KJ X, (12)

J

where B relates element stresses to nodal forces, K; is the contri-
bution of element j to the element stiffness matrix with its current
strain, and R;; being row j of matrix R;. The gentle control forces
may not be entirely self-consistent (i.e., an element might need dif-
ferent forces to correct a given state of strain at different parts of
the trajectory). Therefore, we solve for w and w*' simultaneously
by least squares using the data from all time steps. The topology
independence feature of our RBF based representation enables its
transfer to other objects.

7. Results and Discussion

In this section, we describe experiments that help reveal what is
taking place in each step of the algorithm. To validate the accuracy
of our algorithm, we use both real captured data and synthetic data
generated by forward simulations with known material properties.

7.1. Space-Time Optimization

Space-time optimization is the critical step in the entire pipeline to
get training sets from pure kinematic trajectories. For this section
we designed three tests using synthetic data to illustrate how our
scheme can lead to the convergence of the entire algorithm. To bet-
ter reflect real captured data in this evaluation, we use virtual scans
as input trajectories.

x10*

= Traj-Full-Node
e Traj-Reduce120-Node
Traj-Reduce60-Node
e Traj-Reduce30-Node
== Traj-Reduce15-Node
PC-Reduce60-Surface

25

05|

Total Node-wise Position Error (m)

e
~ SO =
0 2 A‘l t; é 1‘0 12 1‘4 16 18
Material Learning Iteration Number

Figure 4: Convergence comparison for learning a material cor-
rection with different space-time optimization strategies. Input is
either synthetic surface trajectories (Traj) or synthetic point cloud
sequence (PC). Full and Reduce# distinguish between full and re-
duced space optimization, where # is the number of basis functions.

Figure 5: Convergence comparison under different observation
conditions. A neo-Hookean material with edited compression re-
gions is the learning target. From left to right, 100%, 13%, and
6% of the surface nodes are assumed visible. Red dots indicate the
exact location of visible nodes. The rightmost bar imitates a real
application where the surface information is represented as point

cloud data. The error norms in nodal positions are plotted on the
right with different colors. They all converge sufficiently well.

2000

— Dense
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Sparse

= Point Cloud

1500

0 20 40 60 80 100
Material Learning Iteration Number

Total Node-wise Position Error (m

For a large scale system or a long trajectory, we must solve
space-time optimization in reduced space. We test different strate-
gies using the same synthetic example (turtle with neo-Hookean
material) and compare how well they converge. The results are
shown in Fig. 4. Tests using node based position constraints or
point cloud patch based position constraints are distinguished by
keywords ‘Node’ and ‘Surface’. From the comparison of the first
five curves in Fig. 4, node-wise position constraints lead to large
control forces during the first several learning iterations, when the
nominal material is far from ground truth. Consequently, this intro-
duces some overshooting. Through reduced space-time optimiza-
tion, these inconveniently large force residuals are smoothly dis-
tributed throughout the entire object’s domain. We observe good
convergence as seen in the last curve in Fig. 4 for learning from
point cloud trajectories.

Our algorithm can handle noisy and sparse observations. We
tested it on the same synthetic examples with different observa-
tion conditions. The learning target is a neo-Hookean material with
edited compression regions. Notice that in Fig. 5, the number of ob-
servation points in the first three cases drops sharply. For all these

(© 2020 The Author(s)
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Figure 6: Convergence comparison with different position con-
straint enforcement weights. The learning target is a neo-Hookean
material with edited compression regions. Position error norms at
each iteration are plotted for seven different A values in Eq. 6.
Strong position constraints introduce vibration at early iterations,
while soft ones mildly sacrifice accuracy.

experiments, our algorithm can converge to a sufficiently accurate
solution. We also used virtual scans to imitate a real capture situ-
ation, where point cloud data cover the whole surface. Our patch
based position constraint adopted in the last case (Section 5.3) per-
forms better than the sparse observation case and only mildly worse
than the accurate full surface observation case.

As described in Eq. 6, A controls the enforcement weight of po-
sition constraints, which influences the control force. We chose dif-
ferent A values in the wide range [0.01, 500000], and simulated the
same example (turtle with neo-Hookean material as learning tar-
get, all surface nodes assumed visible). From Fig. 6, we observe
that larger A values introduce some vibration or even overshoot-
ing at the early optimization stages. The unbalanced ratio between
force residual constraint and position constraint causes a large force
deviation in the internal points, which consequently decreases the
quality of generated training data. In contrast, the curves corre-
sponding to smaller A are much smoother along the optimization
iteration axis. From a global perspective, different A will not neces-
sarily produce significantly different final results, even though there
are still subtle accuracy drops for smaller A cases as illustrated in
the zoom-in of Fig. 6. We expect it should be possible to adap-
tively tune A between iterations to speed up convergence. For real
captured data, A is chosen to be small, depending on the confidence
in the observations.

7.2. Nonlinear Constitutive Material Modeling

To validate the generality of our parametric material model estima-
tion algorithm, we test its ability to learn a variety of different ma-
terials using a corotational model for the nominal material. Ground
truth trajectories are either generated in the VEGAFem [BSS12] li-
brary using classical hyperelastic material model, or they are user
defined elasticity and damping models, or captured by Kinect sen-
sors. Table 1 shows the statistics of all our testing cases. Qualitative
results for these cases can be seen in the supplementary video. Each
case is discussed below, while reconstruction errors are listed in the
last column of Table 1.
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Figure 7: Visualization of the learning result accuracy for user de-
signed elastic material examples [XSZB15]. Plots (left) show edited
compression and tension regions of a Neo-Hookean material. Im-
ages (right) use color to show principal stress error distribution of
our learned material correction to a corotational model.

7.2.1. Classical Hyperelastic Material

In Fig. 1, the turtle is made of neo-Hookean material, and the
dragon is made of StVK material. We use two deliberately designed
test trajectories to validate our learning result. The first test has a
similar deformation scale as the training trajectory, while the sec-
ond test has a much larger range of deformation. Table 1 and the
supplementary video show that the learning result can reproduce
similar deformation with high accuracy; the results for different
deformations also demonstrate low error. Vibration differences can
only be observed towards the end of a sequence, and as such, can
largely be attributed to error accumulation.

7.2.2. User Designed Elasticity and Damping Model

Our algorithm can also be extended to model user designed nonlin-
ear elasticity and damping material models. Our third example is a
soft solid sphere whose top part is keyframed in an up-down mo-
tion (Fig. 7). Following the method of Xu et al. [XSZB15], the in-
ternal elastic forces and tangent stiffness matrices are formulated in
a polynomial space of principal stretch. Customized materials are
designed by editing a single stress-strain curve using a spline inter-
face. We tested two different designed nonlinear materials which
edit tension and compression starting from the a neo-Hookean ma-
terial as shown in Fig. 7. The supplementary video shows indistin-
guishable simulation trajectories, while Fig. 7 shows small stress
reconstruction errors produced by our parametric material correc-
tion of a nominal corotational model. We also compared with the
parameter fitting based method of Wang et al. [WWY*15] and a
modification of the method which replaces the simple corotated
elasticity model with a neo-Hookean model. The reported side by
side comparison in Fig. 8 and the supplementary video both clearly
demonstrate that our method is superior to this parameter fitting
algorithm, especially when the default model is simple.

Although linear viscous damping is widely used in the computer
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Table 1: Parameters and errors for different test cases. For each test object we list ground truth (G) and nominal (N) parameters for Young'’s
modulus E in MPa, Poisson ratio v, Rayleigh damping 04 and 0.1, and use U and R to denote user designed and real materials, respectively.
The maximum position errors are measured using percentage of object size in simulations using a time step of 0.001 seconds.

Case Material, Ground Truth (G) Eg \7¢! oo | g | Material (N) En VN QN oy erry,
Turtle neo-Hookean 2e4 043 | 0.0 0.0 Corotation 3.5¢e4 | 043 0.0 0.0 2.8
Dragon StVK 1e5 040 | 0.0 0.0 Corotation 1.2e5 | 0.40 0.0 0.0 0.4
Spherel neo-Hookean(tension) U U 0 0.2 Corotation 1.2e5 | 043 0.0 0.2 4.1
Sphere2 neo-Hookean (compression) U U 0 0.2 Corotation 1.2e5 | 0.43 0.0 0.2 6.0
Bar (Dampingl) Corotation + strain-dep damping 4e4 0.43 U 0.2 Corotation 4e4 0.43 0.0 0.2 0.1
Bar (Damping2) Corotation + strain-dep damping 4e4 0.43 U 0.2 Corotation 4e4 0.43 0.0 0.2 0.8
Pot Holder Real Material R R R R Corotation 2.4e6 | 0.43 0.0 0.0 | 3.0/7.0
Hanger Real Material R R R R Corotation 4.5e5 | 0.43 | 0.001 1.0 4.0
Silicon Bar Real Material R R R R Corotation 3.0e5 | 045 0 0.0 6.0
Bar (Heterogeneous) | Corotation le5/1e7 | 0.40 | 0.0 0.0 Corotation 3e6 0.40 0.0 0.0 | 0.2/0.5

(@) (b) © (d)

Target
Xu et al. 20151

[Wang et al. 2015]
Corotated model

[Wang etal. 2015]
neo-Hookean model

Ours

Figure 8: Comparing material learning techniques where (a)
the target trajectory is generated using neo-Hookean material
with modified compression region [XSZB15]; (b) [WWY*15]; (c)
[WWY*15], replacing the corotated model with the neo-Hookean
model; and (d) our algorithm.
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Figure 9: Visualization of the learning result accuracy for user
designed deformation dependent damping models. Red is used
to show ground truth, while blue shows simulated poses with a
learned parametric material correction.

graphics community, this only constitutes a small subset of all vis-
cous damping models. Under many circumstances, the damping
matrix C can depend nonlinearly on both deformation and veloc-
ity. To validate the accommodation of our material model estima-
tion algorithm for damping compensation, Fig. 9 shows our tests
on a strain-dependent damping model. We start from a Rayleigh
damping model, and substitute the original constant stiffness damp-
ing coefficient oi; with a polynomial function of the first principal
stretch A;. The function of deformation dependent o is controlled
using a spline tool.

Since our parametric material correction model is independent

of topology, it can be easily transferred to other simulation scenar-
ios. The neo-Hookean material with modified tension region model
which we learned from a ball example can be transferred, for in-
stance, to a chubby bunny. As can be gleaned from the video and
Fig. 10 (top), the bunny belly vibrates in a lively fashion during
jumps. From a side by side comparison with the ground truth result
in the video, the simulated trajectories match well initially but then
drift apart due to error accumulation. This inaccuracy could be due
to the learned material itself and/or the mismatch in the geometric
model. We also transfer the two deformation dependent damping
models of Fig. 9 to different leaves of a taro plant to assign sepa-
rate properties for young and old leaves as shown in the video and
Fig. 10 (bottom).

7.2.3. Real Material Fitting

We first validate our algorithm on a silicon bar example. The object
is made by casting an elastomer material of type Silicon-601 into
a bar-shaped mold. The target material properties depend on the
amount of added curing agent, which has no default nominal value.
Moreover, the numerous small air bubbles seen in Fig. 11(d) add
more variance to the material properties. Thus, in the presence of
these bubbles, it is worthwhile to allow an algorithm like ours to
infer the material properties. As illustrated in Fig. 11(a) through
(c), the object is fixed at one end, and three different external loads
(100 g, 200 g, and 300 g) are added at the free end. We released
the load and recorded its vibration. The trajectory of the 300 g case
is used as training data, while the other two are used for testing.
We learn the material using both our method and and the method
of Wang et al. [WWY*15]. We encourage the reader to watch the
side by side comparison in the accompanying video.

We also validated and compared our algorithm with Wang et
al. [WWY*15] for the real silicon pot holder and hanger examples
which are shown in Figs. 12 and 13, respectively. The captured tra-
jectories seen in (a) of both figures are used to obtain material cor-
rections. The raw point cloud data are fused, and severe outliers
are removed using Artec Studio. The results are validated through
external loading tests. More specifically, we fix the objects at one
end, either horizontally or vertically, and attach different weights
at the other end. The external weights are suddenly released and
the vibrations of the soft object are simulated and compared with
the ground truth. A side by side comparison can be seen in the ac-
companying video. For the hanger and silicon bar example, we ob-
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Figure 10: Material transfer. Top: A chubby jumping bunny uses the learned material of the ball in Fig 7(b). Bottom: A plant responds to
user interactions, where the left and middle leaves use learned damping properties of the bars in Fig. 9.
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Figure 11: Silicon bar examples: (a) 300 g external loading case is
used as training data, (b) 200 g external loading case, and (¢) 100 g
external loading case are used as test data; (d) irregular bubbles
can be observed in a magnified view.

Table 2: Performance statistics measured for different testing
cases. From left to right: the test object, number of vertices, num-
ber of tet elements, number of frames for training data, number
of reduced modes, number of learning iterations, number of RBF
kernels, and total computation time in hours for material learning.

Case #vert #tet | #frm | #mode | #iter | #kernel | CPU
Turtle 347 1185 400 200 29 46| 09
Dragon 959 | 2590 | 400 200 19 140 1.1
Sphere 1 2655 | 12712 | 400 200 27 140 | 9.1
Sphere 2 2655 | 12712 | 400 200 23 140 7.7

Bar (Dampl) | 425| 1536 | 300 150 7 400 | 04
Bar (Damp2) | 425| 1536 | 800 400 18 500 25
Pot Holder 3031 | 8843 | 400 200 10 140 42
Hanger 1740 | 5888 | 375 200 4 500| 2.0
Silicon Bar 650 | 2400 | 600 full 6 300 0.5

served that the original constant mass damping coefficient oy must
be substituted with a polynomial function of principal stretch A.

7.3. Material Coarsening

The algorithm proposed in this paper can also be used for material
coarsening. In Fig. 14, a high resolution bar (8 x 8 x 34) is com-
posed of two different constitutive materials, with Young modulus
values of 1e5 and 1e7, respectively. The two materials are compos-
ited in a layer by layer manner, represented by the light and dark
green colors. The low resolution mesh is the result of coarsening
by factor 2 along three axis directions. Two principal deformation

(© 2020 The Author(s)
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modes (bend and twist) are used as training data. The equivalent
coarsened material property found by our algorithm can produce
very similar motion to the original high resolution heterogeneous
model.

7.4. Performance

We measured the computational cost for each critical step on a 10-
core 3.0 GHz Intel 17-6950X desktop. The performance for space-
time optimization, listed in Table 2, correlates with the number of
tetrahedral elements, the number of frames in the motion trajectory,
the number of RBF kernels, and the dimension of selected reduced
basis.

8. Conclusion and Future Work

We have presented a new method for estimating nonlinear constitu-
tive models from trajectories of surface data. The key insight is to
have a parametric material correction model learn the error of the
elastic and damping properties of a nominal material. A framework
for gradually learning this correction from only kinematic data is
described. We have demonstrated our method with several exam-
ples, illustrating the ability of our approach to learn classical ma-
terial models, user designed materials (cartoon physics), and real
world captured data.

The desire to work with realistic constitutive models when sim-
ulating complex motion has been shared for a long while by re-
searchers from many fields, not just computer graphics. The possi-
bility of employing machine learning towards such a goal is tanta-
lizing. We solved an interesting and timely problem which is crit-
ical for all machine learning algorithms for generating annotated
data automatically. We believe our present work is an important
step in that direction.

There are a number of interesting ideas to explore in future re-
search. First, we note that extending our approach to accommodate
a variety of numerical integration techniques would help in avoid-
ing or reducing step size dependent numerical damping effects in
our results. Second, we only address heterogeneous materials in the
case of numerical coarsening to a homogeneous material. There are
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Figure 12: Real Material Fitting: (a) Two captured trajectories and
the corresponding tracking result. (b) Static loading tests: a silicon
pot holder is bent and pulled by external weights, the holder is fixed
at one end horizontally and vertically.

100g 100g
(a) (b)
Figure 13: Real Material Fitting: (a) One captured trajectories and
the corresponding tracking result. (b) Static loading tests: a silicon
hanger is pulled by external weights; the hanger is fixed at top.

interesting extensions that can be considered for dealing with vary-
ing material properties across a model, for instance, by adding a
latent material parameter to our representation. Also, note that our
framework is compatible with many other parametric representa-
tions. For instance, a spline-based representation [XSZB15] could
be another promising option to explore. Finally, there are still a
variety of potential damping effects that we cannot capture with
our approach. The models we estimate do not account for any hys-
teresis in the damping model, while this can be common in real
materials, as can also be the presence of plastic deformation. Cap-
turing a larger variety of complex plastic and damping behaviors is
indeed a very interesting avenue for future work.
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