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Fig. 1. Our unified numerical scheme can simulate the dynamics of a broad array of nonlinearly magnetized materials, ranging from magnetic deformable
bodies to magnetic viscous fluids.

We propose a novel numerical scheme to simulate interactions between a
magnetic field and nonlinearly magnetized objects immersed in it. Under
our nonlinear magnetization framework, the strength of magnetic forces is
effectively saturated to produce stable simulations without requiring any
parameter tuning. The mathematical model of our approach is based upon
Langevin’s nonlinear theory of paramagnetism, which bridges microscopic
structures and macroscopic equations after a statistical derivation. We devise
a hybrid Eulerian-Lagrangian numerical approach to simulating this strongly
nonlinear process by leveraging the discrete material points to transfer both
material properties and the number density of magnetic micro-particles in
the simulation domain. The magnetic equations can then be built and solved
efficiently on a background Cartesian grid, followed by a finite difference
method to incorporate magnetic forces. The multi-scale coupling can be
processed naturally by employing the established particle-grid interpola-
tion schemes in a conventional MLS-MPM framework. We demonstrate the
efficacy of our approach with a host of simulation examples governed by
magnetic-mechanical coupling effects, ranging from magnetic deformable
bodies to magnetic viscous fluids with nonlinear elastic constitutive laws.
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1 INTRODUCTION
Physical systems in the natural world exhibit interactions at dis-
tinct spatial and temporal scales. Magnetism is a representative
example of this long-distance and multi-scale interaction. In engi-
neering communities, leveraging magnetic interactions has become
an effective control mechanism for its instant interaction speed and
fast magnetomechanical coupling via manipulating the electrically
charged particles, opening up a broad horizon of applications such
as remote robotic actuation, wireless control, and precise 3D print-
ing. Devising computational tools to simulate and optimize such
magnetic phenomena is essential for both engineering practices
and scientific research. At the same time, these visually appeal-
ing material motions have also drawn attention from researchers
in the computer graphics community. A large number of efforts
have been devoted to the simulation of magnetic materials, ranging
from magnetic rigid bodies [Kim and Han 2020; Kim et al. 2018;
Thomaszewski et al. 2008] to ferrofluids [Huang et al. 2019; Huang
and Michels 2020; Ishikawa et al. 2013; Ni et al. 2020]. Specifically,
over the course of the ferrofluid simulation study, researchers have
been tackling the challenges of handling the intricate, nonlinear
interactions between the magnetic fields and the various material
properties such as viscosity, incompressibility, and surface tension.
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Fig. 2. A lump of magnetic viscous fluid is attracted by a magnet, bearing a rigid body.
Top: rendered by a reconstructed mesh; bottom: rendered by original particles.

Simulating nonlinearly magnetized materials in a physically cor-
rect way is tantalizing. A nonlinear model, as its many counterparts
in physical simulation such as (nonlinear) elasticity, produces rich
unique geometric and dynamic characteristics, which would have
been infeasible to obtain using a linear model. Theoretically, a strong
magnetic field does saturate magnetization in the real world that de-
viates from linear behaviors. However, among the many advancing
simulation techniques in physics simulation, nonlinear magnetiza-
tion has remained a largely unexplored research domain in physics
simulation due to its multi-faceted computational challenges. First, it
is difficult to directly discretize and solve nonlinear PDEs of magneti-
zation using the existing high-performance linear solvers. Second, it
is challenging to devise a data structure that can handle both micro-
scopic properties and macroscopic quantities. Taking the ferrofluid
as an example, when a magnet approaches, spikes on the liquid
surface become sharper and denser. In the nonlinear model, the
strength of magnetic forces can get saturated, thus slowing down
the deformation rate when the magnet gets extremely close. On
the contrary, in a linear model situation, magnetic forces increase
infinitely, which will blow up the simulation eventually. To deal
with the instability issue there, the only practical way is to carefully
guide the trajectory of magnets.
Several pioneering work on exploring the nonlinearly magne-

tized materials focus on simulating nonlinear magnetic interactions
among rigid bodies. In particular, Kim et al. [2020; 2018] defined the
effective magnetic field as a sum of four components, and the evolu-
tion of individual components is governed by equations originated
from micromagnetics. This method well resolved the instability
issue for rigid bodies where the relative positions of internal par-
ticles do not change. Motivated by their work, we aim to devise a
more comprehensive and versatile simulation framework to facili-
tate a broader range of magnetic phenomena ranging from fluids to
deformable solids, without any parameters to tune.

We leverage Langevin’s nonlinear theory of paramagnetism [Coey
2010], which was established by Paul Langevin to bridge the micro-
scopic particles and macroscopic quantities in statistical physics. In-
tuitively, the microscopic information can be carried by Lagrangian
granular discrete volumes. In constrast, the macroscopic field func-
tions are more suitable to be defined over an Eulerian data structure

such as a background grid. To this end, we adopt a hybrid Eulerian-
Lagrangian discretization where a magnetic-mechanical system
can be efficiently solved on a Cartesian grid, enhanced with a set
of moving particles carrying the number density of magnetic mi-
croscopic particles. We choose to use the material point method
(MPM) as our computational framework. MPM has received exten-
sive attention in the computer graphics community in recent years
[Jiang et al. 2016; Stomakhin et al. 2013]. Specifically, we leverage
the inherent computational merits of a moving-least-squares (MLS)
MPM scheme [Hu et al. 2018] to automatically process the objects’
collision and unify multi-physics simulations under its Eulerian-
Lagrangian framework. By incorporating the magnetic interactions
into the MLS-MPM framework, we achieve an expressive numerical
tool for simulating various kinds of magnetic viscoelastic phenom-
ena, such as magnetic soft bodies and magnetic clay, which were
not feasible for previous approaches.

We summarize our technical contributions as
• The first unified approach to modeling a broad range of non-
linear magnetic phenomena, with a particular focus on mag-
netic viscoelastic materials, based on Langevin’s theory of
paramagnetism;
• An efficient Newton-based algorithm to solve the nonlinear
equations of magnetization on a Cartesian grid;
• An effective numerical scheme to incorporate the nonlinear
magnetic forces into the MLS-MPM framework.

2 RELATED WORK
The existing methods of physically simulating magnetic effects can
be divided into two categories: the Eulerian approaches and the
Lagrangian approaches.

Eulerian Magnetic Simulation. Most of the Eulerian ways to sim-
ulate magnetic substance are developed for fluid solvers. Beginning
with the pioneering work of Oldenburg et al. [2000], a surge of lit-
erature has been devoted to the development of Eulerian numerical
schemes to simulate ferrofluids in a computational physical setting.
Liu et al. [2011] simulated ferrofluid droplets by tracking the surface
using a particle level-set method and solving the magnetic field on
a Cartesian staggered grid by a finite volume approach. Zhu et al.
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Fig. 3. Two lumps of magnetic viscous fluid are attracted by 20 buckyballs.
Top: rendered by a reconstructed mesh; bottom: rendered by original particles, and the color signifies the magnitude of the magnetization intensity.

[2011] employed a similar way to simulate ferrofluid droplets but
used a level-set method instead, while the volume-of-fluid method
was also attempted by researchers as an option [Ghaffari et al. 2015;
Shi et al. 2014]. The state-of-the-art work was present by Ni et al.
[2020] in visual computing community, which employed a level-set
method to track the interface of the magnetic substance and solved
the magnetic field in a Cartesian marker-and-cell (MAC) grid [Har-
low and Welch 1965] by the finite difference method. Their solver
can successfully produce the dynamic motion of various magnetic
substances, including ferrofluids and magnetic solids, but may suffer
instability because of its assumption of linear magnetization, just
like most of the aforementioned Eulerian work.

Lagrangian Magnetic Simulation. Based on the Lagrangian per-
spective, Thomaszewski et al. [2008] first introduced the magnetic
effects into the computer graphics field, integrated with rigid-body
simulations. In their work, the magnetic fields are generated by
permanent magnets, then the magnetization is determined by the
magnetic fields based on the linear constitutive relation, with the
induced magnetic field ignored. Kim et al. [2020; 2018] proposed
magnetization dynamics inspired by micromagnetics to gain a more
convincing physical property and to limit the strength of magnetic
forces and torques, which allows for nonlinear magnetization and
produces both stable and efficient simulations of magnetic rigid
bodies. For non-rigid magnet simulation, Ishikawa et al. [2013]
employed a smoothed-particle-hydrodynamics (SPH) approach to
simulating ferrofluids by treating each particle as a magnetic dipole.
A procedural method was devised to generate the spike structure
on the surface. Huang et al. [2019] invented an accurate large-scale
SPH simulation scheme by incorporating the fast multipole method
(FMM) into the Lagrangian framework to model the magnetic evolu-
tion, which produces visually captivating effects. They also devised
a novel surface-only approach [2020] to simulating incompressible,
inviscid, and linearly magnetizable ferrofluids, which enables more
complex and realistic magnetic simulations.

Material Point Method. The material point method (MPM) [Sulsky
et al. 1995] is a hybrid Lagrangian/Eulerian discretization scheme
for solid mechanics. It is recognized as a generalization of the fluid
implicit particle (FLIP) method [Brackbill and Ruppel 1986], which
is widely used for liquid animation [Zhu and Bridson 2005]. The
framework of MPM has been used for simulating a wide range of
materials, including snow [Stomakhin et al. 2013], foam [Ram et al.
2015; Yue et al. 2015], sand [Daviet and Bertails-Descoubes 2016;

Klár et al. 2016], cloth [Jiang et al. 2017], fracture [Wretborn et al.
2017], cutting [Hu et al. 2018], and solid-fluid mixture [Gao et al.
2018; Stomakhin et al. 2014; Tampubolon et al. 2017]. Hu et al. [2018]
incorporated a moving-least-squares (MLS) version of the MPM,
which is consistent with a Galerkin-style weak form discretization
of the governing equations. Due to its easy implementation and
friendly performance optimization, the MLS-MPM scheme is be-
coming popular in the recent years as a conventional pipeline of
the material point method.

3 PHYSICAL MODELS
In this section, we will introduce the physical models which lay the
foundation of our method. The main quantities involved in the paper
are presented in Table 1, the first part of which is for continuous
quantities, and the second part of which is for discrete ones.

Naming convention. We symbolize vectors and second-order ten-
sors using bold letters (such as 𝑯 and 𝝈 ) and symbolize scalars
using italic letters (such as 𝐻 and 𝜇0). In particular, if a bold letter is
used to stand for a vector, the corresponding italic letter indicates its
magnitude, omitting the information of directions (e.g., 𝐻 = |𝑯 |).

3.1 Nonlinear Magnetization
As an essential part of our solver, we will expand on the nonlinear
magnetization formula from the work of Ni et al. [2020]. To make
the paper self-contained, we will rewrite a detailed derivation of
the formula with the necessary expansion.

The magnetic theory studies the interactions among three fields –
magnetic field intensity 𝑯 , magnetization intensity 𝑴 and magnetic
induction intensity 𝑩. They are constrained by

𝑩 = 𝜇0 (𝑯 +𝑴), (1)

in which 𝜇0 is the constant vacuum permeability.
Among the three fields, 𝑴 is the special one, because of its dis-

tinct microscopic significance. Every microscopic particle, e.g., mol-
ecule, atom and ion, can be considered as a dipole with an invariant
magnetic moment 𝒎𝑙 indicating its magnetic performance. The
macroscopic magnetic performance is described by the vector field
𝑴 :

𝑴 = 𝑴 (𝒙) = lim
Δ𝑉→0

∑
𝑙 𝒎𝑙

Δ𝑉
, (2)

which accumulates across all particles within an infinitesimal Δ𝑉 -
volume domain neighboring the point 𝒙 .
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Fig. 4. A lump of magnetic viscous fluid in a container is attracted by a magnet, generating a spike.
Top: rendered by a reconstructed mesh; bottom: rendered by original particles, and the color signifies the magnitude of the magnetization intensity.

Fig. 5. Two magnetized elastic dragons are ‘playing’ with a bead-shaped magnet.

For paramagnetic materials, the orientation of microscopic par-
ticles is totally random if no magnetic field is applied (i.e., 𝐻 = 0),
which leads to 𝑴 = 0 everywhere. However, when 𝐻 > 0, the
micro-particles will rotate and their magnetic moments will tend to
align, with high probability, with the direction of the magnetic field.
Langevin’s theory of paramagnetism [Rosensweig 1985], induced
by statistical physics, states that

𝒎𝑙 =𝑚𝑙 𝐿

(
𝜇0𝑚𝑙𝐻

𝑘B𝑇

)
𝑯

𝐻
, (3)

with 𝒎𝑙 as the expectation of 𝒎𝑙 in equilibrium, 𝑘B as the Boltz-
mann constant and 𝑇 as the ambient temperature. Here, 𝐿(·), which
denotes the Langevin function, has the following form:

𝐿(𝛼) = coth𝛼 − 1
𝛼
. (4)

It is not hard to prove that the Langevin function converges to 1 as
𝛼 goes to infinity, which is shown in Figure 6.

Since all the microscopic particles are identical, we can ignore
subscript and use𝑚 and 𝒎(𝒙) to represent the magnitude of each
magnetic moment and the average magnetic moment within a par-
ticular infinitesimal domain, respectively. With 𝑛 = 𝑛(𝒙) indicating
the number density of micro-particles, we will acquire

𝑴 = 𝑛𝒎

= 𝑛𝑚 𝐿

(
𝜇0𝑚𝐻

𝑘B𝑇

)
𝑯

𝐻
. (5)
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Fig. 6. The curve of the Langevin function 𝐿 (𝛼) and its linearized version
�̃� (𝛼) = 𝛼/3. We can see that �̃� (𝛼) deviates a lot as 𝛼 gets larger.

Linearization. The number density 𝑛 remains constant when a
material is incompressible. Given constants 𝑘1 = 𝑛𝑚 and 𝑘2 =

𝜇0𝑚/𝑘B𝑇 , (5) can be rewritten as

𝑀 = 𝑘1

(
coth𝑘2𝐻 −

1
𝑘2𝐻

)
(6)

without regard to the direction. If the intensity of the magnetic
field is not that high, which suggests 𝑘2𝐻 ≪ 1, expanding the coth
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Table 1. The main quantities involved in describing a magnetic field.

Notation† Order‡ Meaning
𝒙 1 The position vector

𝑯 (𝒙) 1 The magnetic field intensity
𝑴 (𝒙) 1 The magnetization intensity
𝑩(𝒙) 1 The Magnetic induction intensity
𝜇0 0 The vacuum permeability
𝑘B 0 The Boltzmann constant
𝑇 0 The ambient temperature
𝐿(𝛼) 0 The Langevin function
𝑚 0 The magnitude of magnetic moments
𝑛(𝒙) 0 The micro-particle number density
𝝈 (𝒙) 2 The Cauchy stress tensor
𝑻m (𝒙) 2 The Maxwell stress tensor
Δ𝑥 0 The grid spacing
Δ𝑡 0 The time interval
𝒙𝑖 1 The position of the 𝑖-th grid node
𝒙𝑝 1 The position of the 𝑝-th particle

𝑁𝑖 (𝒙) 0 The B-spline basis function centered at 𝒙𝑖
𝑯𝑖 1 𝑯 saved at grid node 𝑖
𝑴𝑖 1 𝑴 saved at grid node 𝑖
𝑩𝑖 1 𝑩 saved at grid node 𝑖
𝑻𝑖 2 𝑻m computed at grid node 𝑖
𝒕𝑖 1 ∇ · 𝑻m computed at grid node 𝑖
𝑛𝑖 0 The number density saved at grid node 𝑖
𝑚𝑖 0 The mass saved at grid node 𝑖
𝒗𝑖 1 The velocity saved at grid node 𝑖
𝑛𝑝 0 # of micro-particles carried by particle 𝑝

† Alternatively, the subscript 𝑖 can be replaced by 𝑗 .
‡ The order of tensors, with 0 indicating scalars, 1 indicating vectors and 2
indicating matrices.

function in (6), we will obtain

𝑀 = 𝑘1

[
1

𝑘2𝐻
+ 𝑘2𝐻

3
+ 𝑜

(
(𝑘2𝐻 )3

)]
− 𝑘1
𝑘2𝐻

=
𝑘1𝑘2
3
𝐻 + 𝑘1 𝑜

(
(𝑘2𝐻 )3

)
≈ 𝑘1𝑘2

3
𝐻 , (7)

which rolls back to the linear assumption, just as the curves of
𝐿(𝛼) and �̃�(𝛼) show in Figure 6, with 𝛼 set as 𝑘2𝐻 . Now we can
gain insight into the effect of 𝑘1 and 𝑘2. While 𝑘1 determines the
saturation magnetization, the product of 𝑘1 and 𝑘2 determines the
slope of the magnetizing curve’s approximately linear part.
Despite that the convergence of the Langevin function can be

achieved by just clamping the curve in the linearized situation, the
latter will involve non-smoothness in magnetization, which is not
only non-physical, but also makes the magnetic system hard to solve
because of non-differentiability.

3.2 Magnetic Field Evolution
The evolution of amagnetic field is governed byMaxwell’s equations
[Feynman et al. 2011]: 

∇ · 𝑩 = 0, (8a)

∇ × 𝑯 = 𝒋f +
𝜕𝑫

𝜕𝑡
. (8b)

Here 𝒋f is the electric current density of free charges and 𝑫 is the
electric displacement field affecting the magnetic field by electro-
magnetic induction. With (1) substituted in, (8a) is further written
as

∇ · (𝑯 +𝑴) = 0. (9)

In practice, we usually extract the external part from the total
magnetic field, which is denoted by the subscript ‘ext’. The external
magnetic field may be induced by some permanent magnets and
electric currents, and it is determined during runtime. This field
should also satisfy Maxwell’s equations:

∇ · 𝑩ext = 0, (10a)

∇ × 𝑯ext = 𝒋f ext +
𝜕𝑫ext
𝜕𝑡

. (10b)

Therefore, the quantities of the internal magnetic field, denoted by
subscript ‘int’, can be defined as

𝑯int = 𝑯 − 𝑯ext, (11a)
𝑩int = 𝑩 − 𝑩ext, (11b)
𝒋f int = 𝒋f − 𝒋f ext, (11c)
𝑫int = 𝑫 − 𝑫ext. (11d)

For (nearly) non-conductive magnetic objects, it is reasonable to
assume steady-state electric displacement 𝜕𝑫int/𝜕𝑡 = 0 and zero
free current, 𝒋f int = 0, which leads to

∇ × 𝑯int = 0 (12)

by subtracting (10b) from (8b). Since 𝑯int is conservative, we can let
𝑯int = −∇𝜑 , with 𝜑 as a potential function, which, like (11a), can
be further substituted into (9) to obtain

∇ · (𝑯ext − ∇𝜑 +𝑴) = 0, (13)

where 𝑴 is a nonlinear function of 𝑯 = 𝑯ext − ∇𝜑 as formulated
by (5). Solving (13) for 𝜑 , the total magnetic field (i.e., 𝑯 , 𝑴 and 𝑩)
can be computed directly.

Magnetic force. We compute the magnetic force 𝒇m by taking
divergence of the Maxwell stress tensor 𝑻m in matter. The Einstein–
Laub form [1908] of this tensor is

𝑻m = 𝑩 ⊗ 𝑯 − 𝜇0
2
𝐻2𝑰 , (14)

in which 𝑰 is the second-order unit tensor, so the precise formula of
the magnetic force is

𝒇m = ∇ · 𝑻m, (15)

known as the Kelvin force.
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Fig. 7. Top: a linearly magnetized cube; below: a nonlinearly magnetized cube, in which the cubes are attracted by a magnet.

3.3 Magnetic Substance Evolution
The magnetic substance evolution is governed by the basic momen-
tum equation:

𝜌
D
D𝑡

𝒗 = ∇ · 𝝈 + ∇ · 𝑻m + 𝜌𝒈 (16)

with 𝜌 as the mass density, 𝒗 as the velocity, 𝝈 as the Cauchy stress
tensor, 𝑻m as the Maxwell stress tensor and 𝒈 as the gravitational ac-
celeration. While the Cauchy stress tensor varies from one material
to another, the Maxwell stress tensor is distributed everywhere and
not explicitly dependent on material properties. Here, we discuss
the Cauchy stress tensor of two kinds of materials we simulate:
elastic solid and viscoelastic fluid.

Elastic solid. Elastic solid only has elasticity. Therefore, the Cauchy
stress tensor for elastic solid 𝝈S only has the elastic component 𝝈E,
i.e.,

𝝈S = 𝝈E. (17)
We adopt the Neo–Hookean constitutive model [Sifakis and Barbic
2012] for elasticity, which expresses the elastic component 𝝈E as

𝝈E = 𝜇𝐽−1
(
𝑭 𝑭𝑇 − 𝑰

)
+ 𝜆𝐽−1 log 𝐽 , (18)

where 𝜇 and 𝜆 are the Lamé’s parameters, and 𝑭 is the deformation
gradient with 𝐽 = |𝑭 | indicating the rate of volume change.

Viscoelastic Fluid. Viscoelastic fluid has both viscosity and elas-
ticity. Therefore, the Cauchy stress tensor 𝝈F for viscoelastic fluid
has two components: the viscous component 𝝈N and the elastic
component 𝝈E:

𝝈F = 𝝈N + 𝝈E. (19)
We adopt the Newtonian model for viscosity, which expresses the
viscous component 𝜎𝑁 as

𝝈N = 𝜇N
(
𝜕𝒗

𝜕𝒙
+ 𝜕𝒗
𝜕𝒙

T)
, (20)

where 𝜇N is the viscous coefficient. The elastic component 𝝈E for
fluid is given by

𝝈E = −𝐾 (1 − 𝐽 )𝑰 , (21)
in which𝐾 is the bulk modulus. Therefore, we only need to take care
of the rate of volume change 𝐽 without the deformation gradient
[Tampubolon et al. 2017].

4 NUMERICAL ALGORITHMS

4.1 Magnetic Field
We discretize the concerned domain by a node-centered collocated
Cartesian grid, just identical with the grid of MPM as shown in
Section 4.3. The magnetic field on the grid boundary is set to be
∇𝜑 · 𝒏 = 0, where 𝒏 is the normal vector of the boundary. This
Neumann boundary condition, also known as magnetic shielding,
which is commonly adopted to replace the boundary condition
𝜑 → 0 at infinity.

Supposed that the number of grid nodes is 𝑠 , the scalar field 𝜑
can be discretized as an 𝑠-dimensional column vector denoted �̂�.
Similarly, 𝑯ext, 𝑴 and other vector fields can be discretized as �̂�ext,
�̂� and so on, which are 𝑑𝑠-dimensional column vectors with 𝑑 as
the dimension of original vector. Then, (13) can be discretized as

𝑭 (�̂�) = −𝑮T (�̂�ext − 𝑮�̂� + �̂�) = 0, (22)

in which 𝑮 ∈ R𝑑𝑠×𝑠 is the discretized form of the gradient operator
with its transpose 𝑮T as one of the (negative) divergence operator
(see the work of Robinson-Mosher et al. [2008]), and �̂� is a nonlinear
function of �̂� = �̂�ext − 𝑮�̂�.

We employ the Newton–Raphson method to solve this nonlinear
equation. We start with the �̂�0 from the last frame as an initial guess.
For the 𝑛-th Newton iteration, we first calculate the derivative of
𝑭 (�̂�) at �̂�𝑛−1, then we hope to decrease the current value of 𝑭 (�̂�)
at �̂�𝑛 : {

𝑭 ′(�̂�𝑛−1) Δ�̂�𝑛 = −𝑭 (�̂�𝑛−1), (23a)
�̂�𝑛 = �̂�𝑛−1 + 𝜆𝑛 Δ�̂�𝑛 , (23b)

where 𝜆𝑛 is the step size determined by line search, and

𝑭 ′(�̂�) = 𝑮T
(
𝑰 + 𝜕�̂�

𝜕�̂�

)
𝑮 . (24)

Here, 𝜕�̂�/𝜕�̂� is a block diagonal matrix with 𝑠 blocks. Each block
is a 𝑑 ×𝑑 square matrix. Taking consideration of quantities saved at
grid nodes, we use 𝒙𝑖 to denote the position of the 𝑖-th grid node and
define 𝑴𝑖 , 𝑯𝑖 and 𝑛𝑖 to be corresponding quantities saved at grid
node 𝑖 . Then 𝜕𝑴𝑖/𝜕𝑯𝑖 is just the 𝑖-th block of 𝜕�̂�/𝜕�̂� . Therefore,
We can get d�̂�/d�̂� by computing 𝜕𝑴𝑖/𝜕𝑯𝑖 for every grid node 𝑖 .
First, we obtain

𝑴𝑖 = 𝑛𝑖𝑚𝐿

(
𝜇0𝑚𝐻𝑖

𝑘B𝑇

)
𝑯𝒊

𝐻𝑖
(25)
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Fig. 8. Four pairs of magnetic viscous fluid and magnets. From left to right: low viscosity-low intensity of magnetization; high viscosity-low intensity of
magnetization; low viscosity-high intensity of magnetization; high viscosity-high intensity of magnetization;

according to (5). Using the chain rule in differentiation, the deriva-
tive of the𝛼-th component of𝑴𝑖 with respect to the 𝛽-th component
of 𝑯𝑖 can be calculated as follows:

𝜕𝑴𝑖𝛼

𝜕𝑯𝑖𝛽

=
𝑛𝑖𝜇0𝑚2

𝑘B𝑇
𝐿′

(
𝜇0𝑚𝐻𝑖

𝑘B𝑇

)
𝐻𝑖𝛼𝐻𝑖𝛽

𝐻2
𝑖

+𝑛𝑖𝑚𝐿

(
𝜇0𝑚𝐻𝑖

𝑘B𝑇

)
𝛿𝛼𝛽𝐻

2
𝑖
− 𝐻𝑖𝛼𝐻𝑖𝛽

𝐻3
𝑖

.
(26)

Thanks to the monotony of the Langevin function, the matrix
𝜕�̂�/𝜕�̂� is symmetric positive semi-definite, and the matrix 𝑭 ′(�̂�)
is symmetric positive definite. The proof is given in Appendix A.1.
Therefore, we can use the preconditioned conjugate gradient solver
in each iteration of the Newton–Raphson method.

The above procedure is summarized in Algorithm 1. If we perform
linearization as mentioned in Section 3.1, it seems to suggest that
the algorithm will converge in one iteration, but it will suffer from
instability.

4.2 Magnetic Force
The governing equation of magnetic substance evolution is given by
(16). In practice, We concurrently solve elastic force and magnetic
force toward an equilibrium state. The numerical solution for the
elastic force is given by the traditional MPM. We now discuss how
to apply the magnetic force numerically.
By taking the weak form and using spatial and temporal grid

discretization, (16) can be written as[
(𝑚𝒗)𝑛+1

𝑖
− (𝑚𝒗)𝑛

𝑖

]
Δ𝑡

=

∫
𝜕Ω𝑡𝑛

𝑁𝑖 (𝒙)𝝈 (𝒙, 𝑡𝑛) d𝒔 (𝒙)

−
∫
Ω𝑡𝑛

𝝈 (𝒙, 𝑡𝑛)∇𝑁𝑖 (𝒙) d𝒙 +
∫
Ω𝑡𝑛

𝑁𝑖 (𝒙)∇ · 𝑻m (𝒙, 𝑡𝑛) d𝒙 +𝑚𝑖𝒈

(27)

with Δ𝑡 as the time interval, 𝑡𝑛 as the 𝑛-th time point, Ω as the
material domain, and d𝒔 as the area element. The grid basis function
𝑁𝑖 (𝑥) is the dyadic product of one-dimensional quadratic B-spline

ALGORITHM 1: Magnetic Field Computation
Input: The discretized number density 𝑛𝑖 of magnetic microscopic

particles and the discretized external magnetic field, denoted
by �̂�ext.

Output: The magnetic field quantities, i.e., 𝑯𝑖 , 𝑴𝑖 and 𝑩𝑖 , at each
grid node.

�̂� ← 0 or that from the last frame;
𝜀 ← the convergence threshold of each Newton step;
while |𝑭 (�̂�) | > 𝜀 do

Assemble matrix 𝜕�̂�/𝜕�̂� from blocks 𝜕𝑴𝑖/𝜕𝑯𝑖 ;
𝑭 ′ (�̂�) ← 𝑮T (𝑰 + 𝜕�̂�/𝜕�̂� )𝑮 ;
Solve 𝑭 ′ (�̂�) Δ�̂� = −𝑭 (�̂�) for Δ�̂� by the PCG method;
𝜆 ← 1;
while |𝑭 (�̂� + 𝜆 Δ�̂�) | ≥ |𝑭 (�̂� |) do

𝜆 ← 𝜆/2;
end
�̂� ← �̂� + 𝜆 Δ�̂�;

end
�̂� ← �̂�ext + 𝑮�̂�;
Split �̂� for 𝑯𝑖 and compute 𝑴𝑖 and 𝑩𝑖 by corresponding equations;

as in the work of Steffen et al. [2008]:

𝑁𝑖 (𝒙) = 𝑁
(𝑥1 − 𝑥𝑖1

Δ𝑥

)
𝑁

(𝑥2 − 𝑥𝑖2
Δ𝑥

)
𝑁

(𝑥3 − 𝑥𝑖3
Δ𝑥

)
, (28)

𝑁 (𝑥) =


3
4 − |𝑥 |

2, 0 ≤ |𝑥 | < 1
2 ,

1
2

(
3
2 − |𝑥 |

2
)2

, 1
2 ≤ |𝑥 | <

3
2 ,

0, 3
2 ≤ |𝑥 |,

(29)

with 𝒙 = (𝑥1, 𝑥2, 𝑥3) as the evaluation position, 𝑖 as the grid index,
𝒙 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3) as the position of the grid node 𝑖 and Δ𝑥 as the grid
spacing. The discretization of the first term

∫
𝜕Ω𝑡𝑛 𝑁𝑖 (𝒙)𝝈 (𝒙, 𝑡𝑛) d𝒔 (𝒙)

and second term
∫
Ω𝑡𝑛 𝝈 (𝒙, 𝑡𝑛)∇𝑁𝑖 (𝒙) d𝒙 is explained in the work

of Jiang et al. [2016] in detail. Here we show how to discretize the
third term, namely the magnetic force

∫
Ω𝑡𝑛 𝑁𝑖 (𝒙)∇ · 𝑻m (𝒙, 𝑡𝑛) d𝒙 .
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Fig. 9. Top: attraction caused by magnetic force; below: attraction caused by artificial force.

First, we split up the continuous material space Ω𝑡𝑛 into the
discrete grid cells Ω 𝑗 which are saturated by material points:∫

Ω𝑡𝑛
𝑁𝑖 (𝒙)∇ ·𝑻m (𝒙, 𝑡𝑛) d𝒙 ≈

∑
𝑗

∫
Ω 𝑗

𝑁𝑖 (𝒙)∇ ·𝑻m (𝒙, 𝑡𝑛) d𝒙 . (30)

Second, within a grid cell 𝑗 , theMaxwell stress tensor 𝑻m is viewed
as a constant matrix 𝑻𝑗 and the divergence of the Maxwell stress
tensor ∇ · 𝑻m is viewed as a constant vector 𝒕 𝑗 . We can use 𝑩 𝑗 and
𝑯 𝑗 obtained in Algorithm 1 to calculate 𝑻𝑗 .

𝑻𝑗 = 𝑩 𝑗 ⊗ 𝑯 𝑗 −
𝜇0
2
𝐻2
𝑗 𝑰 (31)

We use grid-based finite difference to calculate 𝒕 𝑗 . To denote the
neighbours of grid node 𝑗 , we define two symbols 𝑟𝛽 𝑗 and 𝑙𝛽 𝑗 , to
represent as the indices of the right and left nodes of node 𝑗 in the
𝛽-th axis respectively. The 𝛼-th component of 𝒕 𝑗 is given by

(𝒕 𝑗 )𝛼 =
∑
𝛽

(𝑻𝑟𝛽 𝑗
)𝛼𝛽 − (𝑻𝑙𝛽 𝑗

)𝛼𝛽
2Δ𝑥

, (32)

where 𝑻𝑟𝛽 𝑗
is the Maxwell stress tensor on the grid node 𝑟𝛽 𝑗 , and

𝑻𝑙𝛽 𝑗
is the one on the grid node 𝑙𝛽 𝑗 . After getting 𝒕 𝑗 , we make an

approximation of our target:∑
𝑗

∫
Ω 𝑗

𝑁𝑖 (𝒙)∇ · 𝑻m (𝒙, 𝑡𝑛) d𝒙 ≈
∑
𝑗

𝒕 𝑗

∫
Ω 𝑗

𝑁𝑖 (𝒙) d𝒙 . (33)

Third, we do cell-wise integration over the grid basis function
𝑁𝒊 (𝒙), with 𝑅𝑖 𝑗 denoting the integration value of

∫
Ω 𝑗
𝑁𝑖 (𝒙) d𝒙 . We

note that only if cell 𝑖 adjoins cell 𝑗 , is 𝑅𝑖 𝑗 non-zero, since the value
of 𝑁𝑖 (𝒙) varnishes in Ω 𝑗 if cell 𝑖 is not adjacent to cell 𝑗 . Therefore,
there are only finite cases for the spatial relation between node 𝑖
and node 𝑗 when 𝑅𝑖 𝑗 is non-zero. Since the positions of grid nodes
are constant, 𝑅𝑖 𝑗 can be computed in advance. The calculation of
𝑅𝑖 𝑗 is trivial, and we give the results in Appendix A.2.
Finally, the third term of the right-hand-side in (27) can be ap-

proximated by ∑
𝑗

𝒕 𝑗

∫
Ω 𝑗

𝑁𝑖 (𝒙) d𝒙 =
∑
𝑗

𝑅𝑖 𝑗 𝒕 𝑗 . (34)

4.3 The Full Method
We incorporate the magnetic field computation into the algorithm
of MLS-MPM [Hu et al. 2018]. Here, the term ‘particle’ indicates
a material point, which controls billions of microscopic particles.
For the 𝑝-th particle, we add a new property 𝑛𝑝 on it to indicate
the number of magnetic micro-particles carried by it. With the new
property assigned, we can start our magnetic field computation.
First, we transfer 𝑛𝑝 from particles to grid in the P2G step of MPM
and calculate the corresponding 𝑛𝑖 saved at the 𝑖-th grid node for
each 𝑖 . Then, we use Algorithm 1 to compute the magnetic field.
After that, we calculate magnetic forces for all the grid nodes, and
apply them in the later grid operation.

The full method is summarized in the following.

(1) Particles to grid. Use APIC [Jiang et al. 2015] or PolyPIC
[Fu et al. 2017] to transfer momentum from particles to grid.
Use the grid basis functions 𝑁𝒊 (𝒙) to transfer mass and mi-
croscopic particle number from particles to grid.

(2) Calculate magnetic field. Use the transferred number of
microscopic particles and the volume of cells to calculate the
number density of micro-particles saved at every grid node.
Then execute the Algorithm 1 to compute the magnetic field.

(3) Calculate magnetic force. Use the magnetic field to calcu-
late the Maxwell stress tensor at every grid node. Then use
the grid-based finite difference to calculate the divergence of
Maxwell stress tensor, namely the magnetic force at every
grid node.

(4) Update grid momentum. Use the forward or backward Eu-
ler scheme to update grid momentum. In this work, we adopt
an explicit integrator for implementation. An implicit one
can reduce the number of time steps but requires more effort
on solving linear systems.

(5) Grid to particles. Use APIC or PolyPIC to transfer velocities
and affine coefficients from grid to particles.

(6) Particle deformation gradient. Use the MLS approxima-
tion [Hu et al. 2018] to update the particle deformation gradi-
ent.

(7) Particle advection. Update particle positions with their new
velocites.
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(6) Particle 
deformation gradient

(1) Particles to grid

(3) Calculate 
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momentum

(5) Grid to particles(7) Particle 
advection

(2) Calculate 
magnetic field

Fig. 10. The pipeline sketch of the temporal evolution of a magnetic
substance. New components (painted red) are added on the basis of the

standard material point method (painted blue).

5 SIMULATION RESULTS
We evaluate the efficacy of our method by a set of examples for
magnetic phenomena simulation. The magnetic field is solved once
per frame and several MPM steps are taken within each frame1. Pa-
rameter settings used in the simulations are summarized in Table 2.
These experiments are performed by three threads on an Intel(R)
Xeon(R) W-3175X processor, with the PCG solver implemented by
CUDA and run on a NVIDIA Quadro RTX 8000 graphics card.

Convergence of the Newton based algorithm. First of all, we eval-
uate the convergence of Algorithm 1 for different settings. The
objects all rest at the original positions, and the initial guess of
the Newton–Raphson method is set as 0. From Figure 12, we can
see that the numerical algorithm for magnetic field computation
converges rapidly after several iterations, and the relative resid-
ual, i.e., |𝑭 (�̂�) |/|𝑭 (0) |, almost approaches machine precision after
6 iterations for all the settings.

Surfing. As shown in Figure 2, we simulate a lump of magnetic
viscous fluid, which bears a rigid surfer. The viscosity of the fluid
is much higher than ferrofluid, so it behaves more like a lump of
clay. The fluid is nonlinearly magnetized and attracted by a magnet.
During the process, the surfer is carried forward by the fluid and
behaves like surfing. We highlights the automatic handling of fluid-
rigid body coupling in the magnetization induced motion. This is a
merit of using the MPM to simulate magnetized materials.

Buckyballs. As shown in Figure 3, we simulate two lumps of mag-
netic viscous fluid. They are nonlinearly magnetized and attracted
by 20 magnetic buckyballs. The process consists of two stages. In the
former, the fluid at the bottom crawls on the buckyballs. In the latter,
the fluid at the top falls down, then collides with the buckyballs and
the fluid at the bottom. Through this example, we demonstrates that
our method can handle complex geometries, topological changes
and collisions.

Spike. As shown in Figure 4, we simulate a lump of magnetic vis-
cous fluid in a container. The fluid generates a spike in the attraction
of a magnet whose motion is scripted. The spike gradually grows
up and finally contacts the magnet. After that the magnet begins to
rotate and rise. The spike follows the magnet in the process.

1This is reasonable because the displacement distance of a MPM particle within a frame
is far less than the grid spacing Δ𝑥 in our simulation settings.

Two dragons. To test our scheme in coupling between multiple
objects and a magnet, we set a scene of two magnetized dragons
playing with a bead (a big one), as shown in Figure 5. The two
dragons are elastic solid, and the bead is a spherical permanent
magnet. The two dragons are attracted to the bead and collide with
each other. The collision is automatically handled by the material
point method.

Magnetic cube. We conduct a comparison study to demonstrate
the stability of nonlinear magnetization during the interaction be-
tween a magnet and a magnetized object. As shown in Figure 7,
We simulate two elastic cubes. One is linearly magnetized, and the
other is nonlinearly magnetized. As a variable controlled in this
experiment, the linear magnetization function is set to be equiv-
alent to the first order Taylor’s expansion term of the nonlinear
Langevin function. We use a strong magnet to attract the two cubes.
Because of our settings, the two cubes perform dynamically and
similarly when they are far from the magnet. However, when they
contact the magnet, the linearly magnetized cube explodes while
the nonlinearly magnetized cube keeps stable. The comparison ex-
periment highlights the importance of nonlinear magnetization, as
it relieves a conflict in simulating the interaction between a magnet
and a magnetized object. Generally, we want a magnetized object
to perform some dynamic response to the magnet when it is far
from the magnet, but still keeps stable when it contacts the magnet.
This is challenging for a linearly magnetized object. The reason lies
in the uneven spatial distribution of the magnetic field excited by
the magnet. The intensity of the magnetic field damps rapidly as
the distance from the magnet increases. If we use a weak magnet,
a linearly magnetized object may not perform any observable re-
sponse when it is far from the magnet. If we use a strong magnet,
the linearly magnetized object can not contact the magnet stably.
By contrast, the nonlinearly magnetized cube can tolerate a strong
magnet thanks to its bounded magnetization intensity.

Parameter study. We simulate four pairs of magnetic viscous fluids
and magnets. The scene setting is identical for each pair: putting a
spherical magnet on a lump of magnetic viscous fluid. The viscosity
of fluids and the magnetization intensity of magnets vary from one
pair to another. We use the four pairs to demonstrate the role of fluid
viscosity and the role of magnet’s intensity of magnetization in the
interaction between magnetic viscous fluids and magnets. When the
magnet’s intensity of magnetization is high, the magnetic force is
greater than gravity, thus the fluid will crawl on the magnet. When
the fluid viscosity is high, the fluid tends to gather. We demonstrate
the different equilibrium states in Figure 8.

Attraction comparison. Both a magnetic force and universal grav-
itation can lead to attraction between objects. The intensity of uni-
versal gravitation is so small that it is negligible if celestial bodies
are not involved. In computer graphics, the intensity of universal
gravitation is often proportionally magnified to generate observable
attraction between non-celestial objects. We refer to the magnified
force as an artificial force here. We make a comparison between
attractions generated by magnetic forces and artificial forces. We
conduct two experiments. First, a lump of magnetic viscous fluid is
attracted by a spherical magnet. Second, the existence of an artificial
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Fig. 11. Two magnetic cubes are nonlinearly magnetized by a horizontal uniform magnetic field and then attracted by each other because of the opposite
polarities of confronting faces. The induction lines of the (induced) internal magnetic field are drawn.

Table 2. Simulation parameters for the examples.

Figure Scene Description† External Field 𝑀 of the Magnet # of Particles # of Particles
Per Cell Total Time‡ Alg. Time‡

2 Surfing Magnet 2.0 × 106 A/m 2.8 × 105 32 88.3 s 21.4 𝑠
3 Buckyballs Magnet 3.0 × 106 A/m 1.1 × 106 32 239.3 𝑠 25.9 𝑠
4 Spike Magnet 1.0 × 106 A/m 4.2 × 105 32 123.0 𝑠 18.5 𝑠
5 Two dragons Magnet 4.0 × 105 A/m 4.0 × 105 8 118.2 𝑠 16.8 𝑠
7 Cube (linear) Magnet 2.0 × 106 A/m 1.1 × 105 8 45.3 𝑠 16.3 𝑠
7 Cube (nonlinear) Magnet 2.0 × 106 A/m 1.1 × 105 8 48.6 𝑠 19.6 𝑠
8 Parameter study (1) Magnet 1.0 × 105 A/m 5.3 × 104 8 36.2 𝑠 14.6 𝑠
8 Parameter study (2) Magnet 1.0 × 105 A/m 5.3 × 104 8 36.6 𝑠 14.6 𝑠
8 Parameter study (3) Magnet 4.0 × 105 A/m 5.3 × 104 8 37.4 𝑠 15.7 𝑠
8 Parameter study (4) Magnet 4.0 × 105 A/m 5.3 × 104 8 37.9 𝑠 15.7 𝑠
9 Attraction (magnetic) Magnet 1.5 × 106 A/m 7.1 × 104 8 41.7 𝑠 19.8 𝑠
9 Attraction (artificial) \ \ 7.1 × 104 8 23.3 𝑠 \
11 Induced attraction Uniform \ 2.5 × 105 8 74.1 𝑠 10.5 𝑠
13 Ferrofluid (2D) Uniform \ 1.6 × 104 16 2.2 𝑠 0.1 𝑠
14 Ferrofluid (3D) Uniform \ 4.7 × 105 8 137.4 𝑠 18.7 𝑠

† All these simulations use realistic physical values, including 𝜇0 = 4𝜋 × 10−7 N/A2 , 𝑘B = 1.380649 × 10−23 J/K and𝑇 = 300K, 𝜌 = 2500 kg/m3 . The grid spacing
Δ𝑥 is 7.8 × 10−3 m. The grid resolution is 128 × 128 × 128 for 3D cases, and it is 128 × 128 for the 2D case. The time step Δ𝑡 is 5 × 10−5s, and there are 40 steps
per frame. The magnitude of a micro-particle’s magnetic moment𝑚 is 1.09 × 10−19A · m2 . Initially there are 3.60 × 1017 micro-particles in a cell filled with
magnetized materials, which is evenly distributed to the MPM particles within it.

‡ These values are averaged with respect to a single frame, with the algorithm time measured for the Newton–Raphson method (Algorithm 1).

force between the viscous fluid and the sphere results in the attrac-
tion. We adjust the related parameters so that the magnetic force
and the artificial force are comparable in our numerical experiments.
We demonstrate the difference in Figure 9.

Induced attraction. As shown in Figure 11, we put two elastic
cubes in a horizontal uniform external magnetic field. After being
magnetized, the cubes’ confronting faces have opposite polarities,
so the cubes will attract each other. We demonstrate the fact and
visualize the 𝑯int within the entire space.

Ferrofluid. We test the response of ferrofluid immersed in a uni-
form vertical magnetic field. Under the action of gravity, magnetic
and fluid viscosity forces, our simulator can generate spiky features
on a fluid surface in both 2D and 3D situations, as shown in Figure
13 and 14. As can be also gleaned from the supplementary video,
due to the lack of capillary forces in our current implementation,

such cone structures were not as stable as in the work of Ni et al.
[2020] .

6 CONCLUSIONS AND DISCUSSIONS
We proposed a novel numerical method to simulate interactions be-
tween magnetic fields and nonlinearly magnetized objects. Our main
contribution lies in an MPM formulation of the nonlinear Langevin
model. The underlying Langevin’s nonlinear theory of paramag-
netism bridges microscopic structures and macroscopic equations
through a statistical derivation. The material point method takes
its responsibility to handle the multi-scale magnetic-mechanical
coupling, in which the nonlinear equation of magnetization is effi-
ciently solved with the Newton–Raphson method. Compared with
previous work from Ni et al. [2020] and Liu et al. [2011], our nonlin-
ear magnetization framework could precisely capture the magnetic
saturation effect in the real world without tuning parameters, which
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Fig. 12. Relative residuals of the Newton–Raphson method as the iteration
number increases for different settings listed in Table 2, with the nonlinear

model of magnetization taken.

will enable efficient and stable simulations of various magnetic
phenomena in a unified way. Moreover, our particle-based domain
discretization provides a more natural way for handling contact
and carrying microscopic quantities than the level-set-based meth-
ods. As an indispensable complement of the numerical schemes
proposed in Zhu et al. [2011] and Liu et al. [2011], we provide a
complete numerical recipe on both the discretization formula and
the nonlinear model extension. Due to its conciseness, our method
can be easily integrated into any conventional MLS-MPM frame-
work or installed as plugins of VFX commercial softwares which
support MPM-based simulations to create stable and novel magnetic
phenomena simulations in both engineering and entertainment.

However, due to the lack of surface tension in the current frame-
work, our simulator can not stably manifest a rich set of the charac-
teristic spike phenomenon as the ferrofluid is immersed in a mag-
netic field. Performance can be regarded as another limitation of our
method. Through comparison with the results of Hu et al. [2018],
we found most of the computation loads (shown in the last two
columns of Table 2) were inherited from the original MPM solver
rather than from our magnetic force evaluation. Our current imple-
mentation is a CPU-GPU hybrid version, where the MPM pipeline
is fully performed on the CPU. Immediate next work is to move
all these procedures onto GPU with the help of the sparse paged
grid (SPGrid) [Setaluri et al. 2014], to gain improved performance,
as proposed by Gao et al. [2018]. Besides, as in the conventional
pipeline of Eulerian fluid simulation, replacing the collocated grid
with a staggered grid, such as a marker-and-cell (MAC) grid [Har-
low and Welch 1965], can promote the accuracy of finite difference
and produce more numerically stable simulations. Thus, how to
discretize the nonlinear equation of magnetization upon a staggered
grid is left as a further study.
Our simulations output positions of particles. For mesh-based

rendering, we need to reconstruct a surface that wraps around the
particles. We use the surface reconstruction function in Houdini.
Flickering occurs where the density of particles is relatively low.

Future work may alleviate the problem by developing some more
advanced surface reconstruction skills.

Another interesting direction for futurework is to incorporate sur-
face tension into the framework, which features spikes on the liquid
surface even if inviscid. There are some work devoted to simulating
surface tension effects within an MPM pipeline [Hyde et al. 2020],
but it may be subtle to considerwhenmagnetic forces present, in that
producing ferrofluid spikes requires high-quality surface tracking
techniques. Furthermore, the current scheme solves the magnetic
field as an optimization problem upon the background Cartesian
grid. Nevertheless, electromagnetic systems are also widely com-
puted by the fast multipole method (FMM) [Beatson and Greengard
1997]. This method does not need any artificial boundary conditions
and can easily resolve problems with open boundaries. Whether the
FMM solver accelerates our numerical scheme and how to combine
it with the MPM framework are the questions that warrant further
research.
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A PHYSICAL ANALYSIS

A.1 Proof of Positive Definiteness
We will prove the derivative matrix 𝑭 ′(�̂�) to be symmetric positive
definite. First, we rewrite (24) as follows:

𝑭 ′(�̂�) = 𝑮T𝑮 + 𝑮T 𝜕�̂�

𝜕�̂�
𝑮 . (35)

After setting the Dirichlet boundary condition, 𝑮T𝑮 is already sym-
metric positive definite. Therefore, semi-positive definiteness of
𝜕�̂�/𝜕�̂� leads to positive definiteness of 𝑭 ′(�̂�). Noting that 𝜕�̂�/𝜕�̂�
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is a block-diagonal matrix, we only need to prove 𝜕𝑴𝑖/𝜕𝑯𝑖 is semi-
positive definite for every 𝑖 .
Without loss of generality, we take the two-dimensional case as

an example. Given that𝑴𝑖 = (𝑀𝑖1, 𝑀𝑖2), 𝑯𝑖 = (𝐻𝑖1, 𝐻𝑖2), we obtain
𝜕𝑴𝑖

𝜕𝑯𝑖
=
𝜇0𝑛𝑖𝑚2

𝑘B𝑇𝐻
2
𝑖

𝐿′
(
𝜇0𝑚𝐻𝑖

𝑘B𝑇

) (
𝐻2
𝑖1 𝐻𝑖1𝐻𝑖2

𝐻𝑖1𝐻𝑖2 𝐻2
𝑖2

)
+𝑛𝑖𝑚
𝐻3
𝑖

𝐿

(
𝜇0𝑚𝐻𝑖

𝑘B𝑇

) (
𝐻2
𝑖
− 𝐻2

𝑖1 −𝐻𝑖1𝐻𝑖2
−𝐻𝑖1𝐻𝑖2 𝐻2

𝑖
− 𝐻2

𝑖2

)
.

(36)

Since 𝐿′(𝜇0𝑚𝐻𝑖/𝑘B𝑇 ) and 𝐿(𝜇0𝑚𝐻𝑖/𝑘B𝑇 ) are both positive, we
only need to prove the two matrices in (36) to be semi-positive
definite. We take the quadratic form of the two symmetric matrices
with respect to an arbitrary vector 𝒙 = (𝑥1, 𝑥2)T. It is easy to validate

𝒙T
(
𝐻2
𝑖1 𝐻𝑖1𝐻𝑖2

𝐻𝑖1𝐻𝑖2 𝐻2
𝑖2

)
𝒙 = (𝑥1𝐻𝑖1 + 𝑥2𝐻𝑖2)2 ≥ 0 (37)

and

𝒙T
(
𝐻2
𝑖
− 𝐻2

𝑖1 −𝐻𝑖1𝐻𝑖2
−𝐻𝑖1𝐻𝑖2 𝐻2

𝑖
− 𝐻2

𝑖2

)
𝒙 = (𝑥1𝐻𝑖2 − 𝑥2𝐻𝑖1)2 ≥ 0. (38)

This completes the proof.

A.2 Calculation of Cell-Wise Integration
The task is to calculate the following integration:

𝑅𝑖 𝑗 =

∫
Ω 𝑗

𝑁𝑖 (𝒙) d𝒙 . (39)

Similarly, we take a two-dimensional case as an example. Provided
that 𝒙 = (𝑥1, 𝑥2) is the evaluation position, 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2) is the
position of node 𝑖 , and 𝒙 𝑗 = (𝑥 𝑗1, 𝑥 𝑗2) is the position of node 𝑗 , we
can acquire

Ω 𝑗 =

[
𝑥 𝑗1 −

Δ𝑥

2
, 𝑥 𝑗1 +

Δ𝑥

2

]
×
[
𝑥 𝑗2 −

Δ𝑥

2
, 𝑥 𝑗2 +

Δ𝑥

2

]
(40)

and

𝑅𝑖 𝑗 =

∫
Ω 𝑗

𝑁

(𝑥1 − 𝑥𝑖1
Δ𝑥

)
𝑁

(𝑥2 − 𝑥𝑖2
Δ𝑥

)
d𝒙

=

∫ 𝑥 𝑗1+ Δ𝑥
2

𝑥 𝑗1− Δ𝑥
2

𝑁

(𝑥1 − 𝑥𝑖1
Δ𝑥

)
d𝑥1 ·

∫ 𝑥 𝑗2+ Δ𝑥
2

𝑥 𝑗2− Δ𝑥
2

𝑁

(𝑥2 − 𝑥𝑖2
Δ𝑥

)
d𝑥2.

(41)

The integration for the first axis can be calculated by∫ 𝑥 𝑗1+ Δ𝑥
2

𝑥 𝑗1− Δ𝑥
2

𝑁

(𝑥1 − 𝑥𝑖1
Δ𝑥

)
d𝑥1 =


2
3Δ𝑥 , |𝑥 𝑗1 − 𝑥𝑖1 | = 0,
1
6Δ𝑥 , |𝑥 𝑗1 − 𝑥𝑖1 | = 1,
0, |𝑥 𝑗1 − 𝑥𝑖1 | > 1.

(42)

So do the other axes, and 𝑅𝑖 𝑗 can be obtained by taking the product
of the integration for each axis.
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